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This paper considers a variant of the classical location-allocation problem in which a fleet of
mobile airships (clustered agents), each carrying multiple delivery drones (subagents), seeks to
jointly determine the optimal placement of airships and allocation of drones to customers to
minimize the total transportation cost. We propose a two-phase, gradient descent-based algo-
rithm that iteratively updates airship locations and drone-customer allocation until convergence.
Furthermore, to handle scenarios where airships are subject to communication constraints, we
introduce a cluster-based distributed drone-customer allocation subroutine using the consensus
alternating direction method of multipliers (C-ADMM). Numerical simulations are provided to
demonstrate the effectiveness of the proposed algorithms.

I. Nomenclature

# = Number of airships
"8 = Number of drones in airship 8
 = Number of customers
A = Index set of airships, where A = {1, . . . , #}
D8 = Index set of drones in airship 8, where D8 = {1, . . . , "8}
T = Index set of customers, where T = {1, . . . ,  }
Π = Set of airship-drone pairs, where Π = {(8, 9) : 8 ∈ A, 9 ∈ D8}
G = Drone-customer bipartite graph, where G = (Π, T , E) with E = Π × T
M = Matching in G
M = Set of perfect matchings in G
?8 = Position of airship 8
\8 = Heading angle of airship 8
E8 = Linear velocity of airship 8
l8 = Angular velocity of airship 8
p = Joint airship position, where p = [?>1 , . . . , ?

>
#
]>

I: = Location of customer :
�M = Transportation cost function
F8 9: = Square unit transportation cost of serving customer : for drone 9 in airship 8
`8 = Weighted centroid of cluster of customers assigned to drones in airship 8
C = Airship communication graph
| · | = Cardinality of a set
‖ · ‖ = Euclidean norm of a vector
S1 = Unit circle
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II. Introduction
Last-mile delivery plays a crucial role in the supply chain, representing the phase where goods move from a

distribution hub to the consumer’s doorstep. Two primary global trends, urbanization and e-commerce, significantly fuel
the growing need for last-mile delivery services. Predictions suggest that by 2050, about 70% of the global population, or
roughly 6.3 billion individuals, will reside in large urban areas with populations exceeding 10 million [1]. Additionally,
in 2018, the global e-commerce sector experienced a growth rate of 23.3% [2]. This shift towards more people living in
densely populated areas, and a rise in per capita online shopping is leading to a continuous surge in parcel delivery
volumes. Despite its importance, last-mile delivery is often the least efficient and most expensive part of the shipping
process due to the costs of navigating diverse routes to deliver individual orders. Conventional home delivery methods
using delivery vans are notably expensive. For example, a simulation study utilizing real-world Finnish data revealed
that traditional van delivery costs range from 2 to 6 Euros, influenced by the density of customers [3]. Significant factors
contributing to these elevated costs, particularly in terms of personnel, include traffic congestion, the lack of parking in
densely packed areas, and instances where customers are unavailable to receive their packages.

Alongside the rapid advancements in technology for autonomous systems, such as unmanned aerial vehicles (UAVs),
a wealth of innovative last-mile delivery methods have gained attention in recent years. These approaches vary widely
from currently utilized alternatives (e.g., cargo bikes) to tested prototypes (e.g., drone-based parcel delivery [4]), and
even extend to futuristic concepts, including Amazon’s patent for the flying warehouse delivery system called the
airborne fulfillment centers [5]. These drone carrier airships would hover over urban centers, deploying drones to deliver
goods directly from the sky. A significant benefit of this high-altitude launch is that it can not only save the expenditure
of energy and fuel but also extend the operational range of drones. Efficient operation of this hierarchical UAV platform,
however, requires substantial research efforts due to the complexity involved in coordinating different layers of vehicles.

An architecture for cooperative missions using multiple drones that accounts for information exchanges and physical
couplings required for joint load transportation was developed in [6]. Another approach concurrently addresses a
combinatorial task assignment problem while generating collision-free trajectories for a team of robots [7]. The authors
of [8] propose a robotic rebalancing solution for a mobility-on-demand transportation system by utilizing a fluid model
and linear programming to ensure vehicle availability across stations while minimizing trips. A unifying cost function for
multi-robot deployment was proposed in [9], where it was shown that geometric, probabilistic, and potential field-based
strategies can be interconnected through a single parameter. Potential game-based methods for decentralized control
and task assignment in multi-agent systems were proposed in [10]. Recent work introduces an algorithmic framework to
efficiently route a large fleet of drones for urban package delivery by leveraging public transit to extend drone range and
minimize delivery times [11].

Central to many practical locational optimization problems, the classical facility location problem is concerned with
determining optimal placement of facilities to serve a set of demand points [12]. When the facilities are mobile agents,
this class of problems branch out into coverage control problems, in which the aim is to strategically position the agents
based on their demand, with the importance of different subregions typically determined by a density function defined
over the spatial domain [13]. As for this class of problems, the seminal work [14] introduced algorithmic frameworks
for distributed control of multi-agent networks for area coverage, emphasizing Voronoi partitions and gradient descent
methods to optimize (time-invariant) spatial distributions. Modified algorithms for spatially non-uniform and time-
varying distributions and clusters of points have been proposed in [15–17]. A recent approach presents a novel framework
for controlling the distribution of multi-agent networks across a specific area to match a target coverage density, using
a two-level approach combining macroscopic and microscopic perspectives [18]. Other previous works concerning
coverage control of multi-agent networks include [19–22], which by no means is a comprehensive list.

Inspired by the abovementioned Amazon’s concept of airborne fulfillment centers, this paper addresses the problem
of serving a set of customers with a group of mobile airships (clustered agents), where each airship is equipped with
multiple delivery drones (subagents). This problem is formulated as a variant of the classical location-allocation
problem [23], the objective of which is to minimize the total cost of serving customers by concurrently finding the
optimal placement of airships and allocation of customers to the drones carried by each airship. A two-phase, gradient
descent-based algorithm with guaranteed convergence is proposed to achieve this goal. In addition, a cluster-based
distributed drone-customer allocation subroutine based on the consensus alternating direction method of multipliers
(C-ADMM) [24] is introduced to handle the case where airships are subject to communication constraints. Lastly,
numerical simulation results highlight the effectiveness of the proposed solution methods.

The remainder of the paper is structured as follows. In Section III, the problem formulation is provided. In Sections
IV, we present our main algorithms and their proofs of convergence. Numerical simulation results are discussed in
Section V. Lastly, Section VI concludes the paper with remarks and suggestions for future research directions.
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Drones

<latexit sha1_base64="upAiec1B1BMe0UhbIufctmp1prw=">AAAB+3icbVBNSwMxEM3Wr1q/1nr0EiyCp7JbRD1JoRePFewHtEvJprNtaLJZkqxYlv4VLx4U8eof8ea/MW33oK0PBh7vzTAzL0w408bzvp3CxubW9k5xt7S3f3B45B6X21qmikKLSi5VNyQaOIuhZZjh0E0UEBFy6ISTxtzvPILSTMYPZppAIMgoZhGjxFhp4JYbqTZSgMJcLjU9cCte1VsArxM/JxWUozlwv/pDSVMBsaGcaN3zvcQEGVGGUQ6zUj/VkBA6ISPoWRoTATrIFrfP8LlVhjiSylZs8EL9PZERofVUhLZTEDPWq95c/M/rpSa6CTIWJ6mBmC4XRSnHRuJ5EHjIFFDDp5YQqpi9FdMxUYQaG1fJhuCvvrxO2rWqf1W9vK9V6rd5HEV0is7QBfLRNaqjO9RELUTRE3pGr+jNmTkvzrvzsWwtOPnMCfoD5/MHVPyUoA==</latexit>

Customer locations

(a) Multi-airship fleet and customer locations

<latexit sha1_base64="2AOxmHu76KaJ4mpEE6sYJ/hCSVg=">AAAB7HicbVBNSwMxEJ31s9avqkcvwSJUkLJbivZY8OKxgtsW2qVk02wbmmSXJCuUpb/BiwdFvPqDvPlvTNs9aOuDgcd7M8zMCxPOtHHdb2djc2t7Z7ewV9w/ODw6Lp2ctnWcKkJ9EvNYdUOsKWeS+oYZTruJoliEnHbCyd3c7zxRpVksH800oYHAI8kiRrCxkl/xrmtXg1LZrboLoHXi5aQMOVqD0ld/GJNUUGkIx1r3PDcxQYaVYYTTWbGfappgMsEj2rNUYkF1kC2OnaFLqwxRFCtb0qCF+nsiw0LrqQhtp8BmrFe9ufif10tN1AgyJpPUUEmWi6KUIxOj+edoyBQlhk8twUQxeysiY6wwMTafog3BW315nbRrVe+mWn+ol5uNPI4CnMMFVMCDW2jCPbTABwIMnuEV3hzpvDjvzseydcPJZ87gD5zPHxk8jYs=</latexit>

(1, 2)
<latexit sha1_base64="SbPyO+pP+nASeGyIwZUYrU6mJng=">AAAB7HicbVBNSwMxEJ2tX7V+VT16CRahgpRdKdpjwYvHCm5baJeSTbNtaDZZkqxQlv4GLx4U8eoP8ua/MW33oK0PBh7vzTAzL0w408Z1v53CxubW9k5xt7S3f3B4VD4+aWuZKkJ9IrlU3RBrypmgvmGG026iKI5DTjvh5G7ud56o0kyKRzNNaBDjkWARI9hYya96V97loFxxa+4CaJ14OalAjtag/NUfSpLGVBjCsdY9z01MkGFlGOF0VuqnmiaYTPCI9iwVOKY6yBbHztCFVYYoksqWMGih/p7IcKz1NA5tZ4zNWK96c/E/r5eaqBFkTCSpoYIsF0UpR0ai+edoyBQlhk8twUQxeysiY6wwMTafkg3BW315nbSva95Nrf5QrzQbeRxFOINzqIIHt9CEe2iBDwQYPMMrvDnCeXHenY9la8HJZ07hD5zPHxe3jYo=</latexit>

(1, 1)
<latexit sha1_base64="g/zzefTc7m+e6Gar149QwBD37l8=">AAAB7HicbVBNSwMxEJ34WetX1aOXYBEqSNnVoj0WvHis4LaFdinZNNuGZrNLkhXK0t/gxYMiXv1B3vw3pu0etPXBwOO9GWbmBYng2jjON1pb39jc2i7sFHf39g8OS0fHLR2nijKPxiJWnYBoJrhknuFGsE6iGIkCwdrB+G7mt5+Y0jyWj2aSMD8iQ8lDTomxkldxL68v+qWyU3XmwKvEzUkZcjT7pa/eIKZpxKShgmjddZ3E+BlRhlPBpsVeqllC6JgMWddSSSKm/Wx+7BSfW2WAw1jZkgbP1d8TGYm0nkSB7YyIGellbyb+53VTE9b9jMskNUzSxaIwFdjEePY5HnDFqBETSwhV3N6K6YgoQo3Np2hDcJdfXiWtq6p7U6091MqNeh5HAU7hDCrgwi004B6a4AEFDs/wCm9Iohf0jj4WrWsonzmBP0CfPxrBjYw=</latexit>

(1, 3)
<latexit sha1_base64="8q+thzqkt9qspFMBjGz40peQVUw=">AAAB7HicbVBNSwMxEJ2tX7V+VT16CRahgpRdKdpjwYvHCm5baJeSTbNtaDZZkqxQlv4GLx4U8eoP8ua/MW33oK0PBh7vzTAzL0w408Z1v53CxubW9k5xt7S3f3B4VD4+aWuZKkJ9IrlU3RBrypmgvmGG026iKI5DTjvh5G7ud56o0kyKRzNNaBDjkWARI9hYya96V/XLQbni1twF0DrxclKBHK1B+as/lCSNqTCEY617npuYIMPKMMLprNRPNU0wmeAR7VkqcEx1kC2OnaELqwxRJJUtYdBC/T2R4VjraRzazhibsV715uJ/Xi81USPImEhSQwVZLopSjoxE88/RkClKDJ9agoli9lZExlhhYmw+JRuCt/ryOmlf17ybWv2hXmk28jiKcAbnUAUPbqEJ99ACHwgweIZXeHOE8+K8Ox/L1oKTz5zCHzifPxxGjY0=</latexit>

(1, 4)
<latexit sha1_base64="+R8U3m/u7ua7DRNb9W60CPLvFDQ=">AAAB7HicbVBNSwMxEJ34WetX1aOXYBEqSNmVqj0WvHis4LaFdinZNNuGZrNLkhXK0t/gxYMiXv1B3vw3pu0etPXBwOO9GWbmBYng2jjON1pb39jc2i7sFHf39g8OS0fHLR2nijKPxiJWnYBoJrhknuFGsE6iGIkCwdrB+G7mt5+Y0jyWj2aSMD8iQ8lDTomxkldxL68v+qWyU3XmwKvEzUkZcjT7pa/eIKZpxKShgmjddZ3E+BlRhlPBpsVeqllC6JgMWddSSSKm/Wx+7BSfW2WAw1jZkgbP1d8TGYm0nkSB7YyIGellbyb+53VTE9b9jMskNUzSxaIwFdjEePY5HnDFqBETSwhV3N6K6YgoQo3Np2hDcJdfXiWtq6p7U6091MqNeh5HAU7hDCrgwi004B6a4AEFDs/wCm9Iohf0jj4WrWsonzmBP0CfPx3LjY4=</latexit>

(1, 5)
<latexit sha1_base64="XY17qKnj6X5iI6Nn8FDZ6OKHzC8=">AAAB7HicbVBNSwMxEJ31s9avqkcvwSJUkLJbivZY8OKxgtsW2qVk02wbmmSXJCuUpb/BiwdFvPqDvPlvTNs9aOuDgcd7M8zMCxPOtHHdb2djc2t7Z7ewV9w/ODw6Lp2ctnWcKkJ9EvNYdUOsKWeS+oYZTruJoliEnHbCyd3c7zxRpVksH800oYHAI8kiRrCxkl+pXXtXg1LZrboLoHXi5aQMOVqD0ld/GJNUUGkIx1r3PDcxQYaVYYTTWbGfappgMsEj2rNUYkF1kC2OnaFLqwxRFCtb0qCF+nsiw0LrqQhtp8BmrFe9ufif10tN1AgyJpPUUEmWi6KUIxOj+edoyBQlhk8twUQxeysiY6wwMTafog3BW315nbRrVe+mWn+ol5uNPI4CnMMFVMCDW2jCPbTABwIMnuEV3hzpvDjvzseydcPJZ87gD5zPHxk+jYs=</latexit>

(2, 1)
<latexit sha1_base64="nrvFXYLcoTriRZh5+mJmVKKLSaA=">AAAB7HicbVBNSwMxEJ31s9avqkcvwSJUkLJbivZY8OKxgtsW2qVk02wbmk2WJCuUpb/BiwdFvPqDvPlvTNs9aOuDgcd7M8zMCxPOtHHdb2djc2t7Z7ewV9w/ODw6Lp2ctrVMFaE+kVyqbog15UxQ3zDDaTdRFMchp51wcjf3O09UaSbFo5kmNIjxSLCIEWys5Fdq17WrQansVt0F0DrxclKGHK1B6as/lCSNqTCEY617npuYIMPKMMLprNhPNU0wmeAR7VkqcEx1kC2OnaFLqwxRJJUtYdBC/T2R4VjraRzazhibsV715uJ/Xi81USPImEhSQwVZLopSjoxE88/RkClKDJ9agoli9lZExlhhYmw+RRuCt/ryOmnXqt5Ntf5QLzcbeRwFOIcLqIAHt9CEe2iBDwQYPMMrvDnCeXHenY9l64aTz5zBHzifPxrDjYw=</latexit>

(2, 2)
<latexit sha1_base64="uP8ERwN2wDdRHh3+XdkKAZ70+5Q=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBahgpSkFu2x4MVjBdMW2lA22027dLMJuxuhhP4GLx4U8eoP8ua/cZvmoK0PBh7vzTAzz485U9q2v63CxubW9k5xt7S3f3B4VD4+6agokYS6JOKR7PlYUc4EdTXTnPZiSXHoc9r1p3cLv/tEpWKReNSzmHohHgsWMIK1kdxq/er6cliu2DU7A1onTk4qkKM9LH8NRhFJQio04VipvmPH2kux1IxwOi8NEkVjTKZ4TPuGChxS5aXZsXN0YZQRCiJpSmiUqb8nUhwqNQt90xliPVGr3kL8z+snOmh6KRNxoqkgy0VBwpGO0OJzNGKSEs1nhmAimbkVkQmWmGiTT8mE4Ky+vE469ZpzU2s8NCqtZh5HEc7gHKrgwC204B7a4AIBBs/wCm+WsF6sd+tj2Vqw8plT+APr8wccSI2N</latexit>

(2, 3)

<latexit sha1_base64="r6olBFY4nIrDJ2gU4SV9goCWpBM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNWHNz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6reTfW6eV2p1/I4inAG53AJHtxCHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDeomMtA==</latexit>

1
<latexit sha1_base64="kg0FFV3VrjOJfFbfbwLe9s1DzQc=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY4kXjxCIo8ENmR2aGBkdnYzM2tCNnyBFw8a49VP8ubfOMAeFKykk0pVd7q7glhwbVz328ltbe/s7uX3CweHR8cnxdOzto4SxbDFIhGpbkA1Ci6xZbgR2I0V0jAQ2Ammdwu/84RK80g+mFmMfkjHko84o8ZKzcqgWHLL7hJkk3gZKUGGxqD41R9GLAlRGiao1j3PjY2fUmU4Ezgv9BONMWVTOsaepZKGqP10eeicXFllSEaRsiUNWaq/J1Iaaj0LA9sZUjPR695C/M/rJWZU81Mu48SgZKtFo0QQE5HF12TIFTIjZpZQpri9lbAJVZQZm03BhuCtv7xJ2pWyd1OuNqulei2LIw8XcAnX4MEt1OEeGtACBgjP8ApvzqPz4rw7H6vWnJPNnMMfOJ8/fA2MtQ==</latexit>

2
<latexit sha1_base64="NkzigU/whPBn945O6vSZbum/3Us=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaVKEcSLx4hkUcCGzI7NDAyO7uZmTUhG77AiweN8eonefNvHGAPClbSSaWqO91dQSy4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS0eJYthkkYhUJ6AaBZfYNNwI7MQKaRgIbAeTu7nffkKleSQfzDRGP6QjyYecUWOlxnW/WHLL7gJknXgZKUGGer/41RtELAlRGiao1l3PjY2fUmU4Ezgr9BKNMWUTOsKupZKGqP10ceiMXFhlQIaRsiUNWai/J1Iaaj0NA9sZUjPWq95c/M/rJmZY9VMu48SgZMtFw0QQE5H512TAFTIjppZQpri9lbAxVZQZm03BhuCtvrxOWldl76ZcaVRKtWoWRx7O4BwuwYNbqME91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AH2RjLY=</latexit>

3
<latexit sha1_base64="t9Jm4LpDFwWSuSmikUvZOrEwOVA=">AAAB5HicbVBNS8NAEJ3Urxq/qlcvi0XwVBIp2mPBi8cK9gPaUDbbSbt2swm7G6GE/gIvHhSv/iZv/hu3bQ7a+mDg8d4MM/PCVHBtPO/bKW1t7+zulffdg8Oj45OKe9rRSaYYtlkiEtULqUbBJbYNNwJ7qUIahwK74fRu4XefUWmeyEczSzGI6VjyiDNqrPRQH1aqXs1bgmwSvyBVKNAaVr4Go4RlMUrDBNW673upCXKqDGcC5+4g05hSNqVj7FsqaYw6yJeHzsmlVUYkSpQtachS/T2R01jrWRzazpiaiV73FuJ/Xj8zUSPIuUwzg5KtFkWZICYhi6/JiCtkRswsoUxxeythE6ooMzYb14bgr7+8STrXNf+mVq82G0UYZTiHC7gCH26hCffQgjYwQHiBN3h3npxX52PVWHKKiTP4A+fzBxSvi40=</latexit>

4
<latexit sha1_base64="cVkupCd8hWFVEYOhktPlTiKcNfI=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNKkcSLx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFS47pfLLlldwGyTryMlCBDvV/86g1ilkYoDRNU667nJsafUmU4Ezgr9FKNCWVjOsSupZJGqP3p4tAZubDKgISxsiUNWai/J6Y00noSBbYzomakV725+J/XTU1Y9adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWldl76ZcaVRKtWoWRx7O4BwuwYNbqME91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AICZjLg=</latexit>

5
<latexit sha1_base64="H0dJp7NSzCwnDwZmTWffvwDBxTA=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNQY4kXjxCIo8ENmR2aGBkdnYzM2tCNnyBFw8a49VP8ubfOMAeFKykk0pVd7q7glhwbVz328ltbe/s7uX3CweHR8cnxdOzto4SxbDFIhGpbkA1Ci6xZbgR2I0V0jAQ2Ammdwu/84RK80g+mFmMfkjHko84o8ZKzeqgWHLL7hJkk3gZKUGGxqD41R9GLAlRGiao1j3PjY2fUmU4Ezgv9BONMWVTOsaepZKGqP10eeicXFllSEaRsiUNWaq/J1Iaaj0LA9sZUjPR695C/M/rJWZU81Mu48SgZKtFo0QQE5HF12TIFTIjZpZQpri9lbAJVZQZm03BhuCtv7xJ2jdlr1quNCulei2LIw8XcAnX4MEt1OEeGtACBgjP8ApvzqPz4rw7H6vWnJPNnMMfOJ8/gh2MuQ==</latexit>

6
<latexit sha1_base64="v5byeBmsPKeMUwlNTdw0XlrwwoA=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNEY4kXjxCIo8ENmR2aGBkdnYzM2tCNnyBFw8a49VP8ubfOMAeFKykk0pVd7q7glhwbVz328ltbe/s7uX3CweHR8cnxdOzto4SxbDFIhGpbkA1Ci6xZbgR2I0V0jAQ2Ammdwu/84RK80g+mFmMfkjHko84o8ZKzeqgWHLL7hJkk3gZKUGGxqD41R9GLAlRGiao1j3PjY2fUmU4Ezgv9BONMWVTOsaepZKGqP10eeicXFllSEaRsiUNWaq/J1Iaaj0LA9sZUjPR695C/M/rJWZU81Mu48SgZKtFo0QQE5HF12TIFTIjZpZQpri9lbAJVZQZm03BhuCtv7xJ2jdl77ZcaVZK9VoWRx4u4BKuwYMq1OEeGtACBgjP8ApvzqPz4rw7H6vWnJPNnMMfOJ8/g6GMug==</latexit>

7
<latexit sha1_base64="W53lgNgmGcCxR3zmWj5JoRk4WSA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWRuUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasKan3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1W9m+p187pSr+VxFOEMzuESPLiFOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MHhSWMuw==</latexit>

8

<latexit sha1_base64="lufqSWTjOgcduF24SzzNKFkDPos=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4KkkR9SQVLx4r2A9oQ9lsN+3SzSbuToQS+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+Oyura+sbm4Wt4vbO7t5+6eCwaeJUM95gsYx1O6CGS6F4AwVK3k40p1EgeSsY3U791hPXRsTqAccJ9yM6UCIUjKKV2jdCm6FITK9UdivuDGSZeDkpQ456r/TV7ccsjbhCJqkxHc9N0M+oRsEknxS7qeEJZSM64B1LFY248bPZvRNyapU+CWNtSyGZqb8nMhoZM44C2xlRHJpFbyr+53VSDK/8TKgkRa7YfFGYSoIxmT5P+kJzhnJsCWVa2FsJG1JNGdqIijYEb/HlZdKsVryLyvl9tVy7zuMowDGcwBl4cAk1uIM6NICBhGd4hTfn0Xlx3p2PeeuKk88cwR84nz8wfJAQ</latexit>

Airships

<latexit sha1_base64="z6Ui/KkhmCDQTx7QaNzA2+Oja24=">AAAB7XicbVBNS8NAEJ34WetX1aOXYBE8laSIepKCHjxWsB/QhrLZTtq1m92wuxFK6H/w4kERr/4fb/4bt20O2vpg4PHeDDPzwoQzbTzv21lZXVvf2CxsFbd3dvf2SweHTS1TRbFBJZeqHRKNnAlsGGY4thOFJA45tsLRzdRvPaHSTIoHM04wiMlAsIhRYqzUvFVSoO6Vyl7Fm8FdJn5OypCj3it9dfuSpjEKQznRuuN7iQkyogyjHCfFbqoxIXREBtixVJAYdZDNrp24p1bpu5FUtoRxZ+rviYzEWo/j0HbGxAz1ojcV//M6qYmugoyJJDUo6HxRlHLXSHf6uttnCqnhY0sIVcze6tIhUYQaG1DRhuAvvrxMmtWKf1E5v6+Wa9d5HAU4hhM4Ax8uoQZ3UIcGUHiEZ3iFN0c6L8678zFvXXHymSP4A+fzB5oNjyQ=</latexit>

Drones

<latexit sha1_base64="rJf3vM2uddrHIR0rxY0n9ByChME=">AAAB8HicbVDLSgNBEJyNrxhfUY9eBoPgKewGUU8SyMVjBPOQZAmzk9lkyDyWmV4hLH6FFw+KePVzvPk3TpI9aGJBQ1HVTXdXlAhuwfe/vcLa+sbmVnG7tLO7t39QPjxqW50aylpUC226EbFMcMVawEGwbmIYkZFgnWjSmPmdR2Ys1+oepgkLJRkpHnNKwEkPjdSCls4flCt+1Z8Dr5IgJxWUozkof/WHmqaSKaCCWNsL/ATCjBjgVLCnUj+1LCF0Qkas56giktkwmx/8hM+cMsSxNq4U4Ln6eyIj0tqpjFynJDC2y95M/M/rpRBfhxlXSQpM0cWiOBUYNJ59j4fcMApi6gihhrtbMR0TQyi4DEouhGD55VXSrlWDy+rFXa1Sv8njKKITdIrOUYCuUB3doiZqIYokekav6M0z3ov37n0sWgtePnOM/sD7/AEeSJCc</latexit>

Customers

(b) Airship-drone hierarchy and drone-customer allocation

Fig. 1 Illustration example of the considered problem with 2 airships, 8 (= 5 + 3) drones, and 8 customers.

III. Problem Formulation
Consider a fleet of # airships (clustered agents) with index set A = {1, . . . , #}. The kinematics of each airship is

described as

¤G8 = E8 cos \8 , (1a)
¤H8 = E8 sin \8 , (1b)
¤\8 = l8 , (1c)

where ?8 = [G8 , H8]> ∈ R2, \8 ∈ S1, E8 ∈ R, and l8 ∈ R denote the position, heading angle, linear velocity, and
angular velocity of airship 8 ∈ A, respectively. The control input of airship 8 is defined as D8 = [E8 , l8]>. Consider
also  customers with index set T = {1, . . . ,  }, where the position of customer : ∈ T is denoted as I: ∈ R2. Each
airship 8 carries "8 ≥ 2 number of delivery drones (subagents) that can be deployed to deliver goods to customers. Let
D8 = {1, . . . , "8} denote the index set of drones in airship 8. The total number of customers is assumed to be equal to
that of drones, i.e.,  =

∑#
8=1 "8 . Figure 1 illustrates the problem setting described above.

Let Π = {(8, 9) : 8 ∈ A, 9 ∈ D8} be the set of airship-drone pairs, E = Π × T be the set of feasible drone-customer
pairs, and G = (Π, T , E) be the (complete and balanced) drone-customer bipartite graph. Additionally, let F8 9: > 0
represent the square unit transportation cost of serving customer : for drone 9 in airship 8 (which depends on, for
instance, the customer’s demand as well as the drone’s specifications such as weight, payload capacity, and battery level).
The objective is to jointly steer airships to a joint position p = [?>1 , . . . , ?

>
#
]> ∈ R2# and determine a drone-customer

matching M ∈ 2E such that the total cost of serving customers,

�M (p) =
∑

( (8, 9 ) ,: ) ∈M
F8 9: ‖?8 − I: ‖2, (2)

is minimized, subject to the kinematic constraint in (1) and one-to-one assignment constraint M ∈ M, where M denotes
the set of perfect matchings (i.e., a matching that covers all vertices) in graph G.

IV. Algorithms
The problem of jointly optimizing p and M to minimize the cost function �M is computationally intractable in

general. This is because, when F8 9: = 1 for all 8, 9 , and : , the problem reduces to the capacitated location-allocation (or
multi-source Weber) problem [25], which is known to be NP-hard even if all customers are located on a straight line
[26]. Consequently, we focus on developing a heuristic method that can effectively find locally optimal solutions.

A. Matching-Based Centroidal Configurations
For any fixed matching M ∈ M, the gradient of the convex quadratic function �M at p ∈ R2# can be calculated by

∇�M (p) = 2


∑
( 9 ,: ) ∈M1 F1 9: (?1 − I:)

...∑
( 9 ,: ) ∈M#

F# 9: (?# − I:)

 = 2


(∑
( 9 ,: ) ∈M1 F1 9:

)
(?1 − `1)

...(∑
( 9 ,: ) ∈M#

F# 9:

)
(?# − `# )


, (3)
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(b) Weighted centroid location for
drone-customer matching M8 =

{(1, 3), (2, 1), (3, 4), (4, 2)}

Fig. 2 Weighted centroid locations for one airship under two different drone-customer matchings.

where M8 = {( 9 , :) ∈ D8 × T : ((8, 9), :) ∈M} denotes the index set of drone-customer pairs associated with airship
8, while `8 represents the weighted centroid of the cluster of customers assigned to drones in airship 8 (see Figure 2 for
illustrative examples):

`8 =

∑
( 9 ,: ) ∈M8

F8 9:I:∑
( 9 ,: ) ∈M8

F8 9:
. (4)

Let - = [`>1 , . . . , `
>
#
]> denote the joint weighted centroid vector. Since all F8 9: are assumed to be positive, we have

that ∇�M (p) = 0 if and only if p = -, i.e., - is the (unique) global minimum of �M.
Now, consider the pointwise minimum function �∗ (·) = minM∈M �M (·). Although this function is generally

nonsmooth and neither concave nor convex, any global minimum p★ of �∗ and the corresponding optimal matching
M★ ∈ arg minM∈M �M (p★) minimize the original cost function together. In addition, for any M ∈ M, the global
minimum of �M is a local minimum of �∗ if �∗ is differentiable thereat. In the sequel, we say that the airships have
reached a matching-based centroidal configuration if there exists a matching M̄ ∈ arg minM∈M �M (p) such that p = -̄,
where -̄ is the joint weighted centroid associated with M̄.

B. Main Algorithm
The main solution method we propose is a variant of the well-known Lloyd’s algorithm [27], which is commonly used

for data clustering and multi-sensor coverage. Similar to Lloyd’s algorithm, our algorithm consists of two alternating
phases: drone-customer allocation and airship steering. These phases are repeated iteratively until convergence, at
which point the locations of airships form a matching-based centroidal configuration. The pseudocode for the algorithm
is presented in Algorithm 1, with detailed explanations provided below.

Allocation Phase (Line 3) Given the current joint airship location p(C), solve the following linear-sum assignment
problem (LSAP) (using, for instance, the Hungarian algorithm [28]):

minimize{
x8 9

} ∑
(8, 9 ) ∈Π

28 9 (p(C))>x8 9 (5a)

subject to
∑
(8, 9 ) ∈Π

x8 9 = 1, (5b)

1>x8 9 = 1, ∀ (8, 9) ∈ Π, (5c)
x8 9 ∈ {0, 1} , ∀ (8, 9) ∈ Π, (5d)

where x8 9 denotes the decision variables of drone 9 of airship 8, i.e., x8 9 = [G8 91, . . . , G8 9 ]>, and 28 9 (p) is the vector of
weighting coefficients given by 28 9 (p) = [F8 91‖?8 − I1‖2, . . . , F8 9 ‖?8 − I ‖2]>. Note that the constraints in (5b) and
(5c) ensure that each drone serves exactly one customer and each customer is served by one drone, while the constraint
in (5d) ensures that G8 9: is a binary variable which is equal to one if drone 9 in airship 8 is assigned to customer : and
zero otherwise. Convert the obtained optimal solution {x̄8 9 } for problem (5) into the corresponding drone-customer
matching M̄ ∈ M by using the relation Ḡ8 9: = 1 ⇐⇒ ((8, 9), :) ∈ M̄.
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Algorithm 1: Joint Airship Coordination and Drone-Customer Allocation
1 C ← 0, -̄ = [ ¯̀>1 , . . . , ¯̀>

#
]> ← [∞, . . . ,∞]> // Initialization

2 while ‖ -̄ − p(C)‖ ≥ n do
3 M̄← Solve (5) // Find an optimal drone-customer matching
4 for 8 ∈ A do in parallel
5 ¯̀8 ← Use (4) // Compute weighted centroids
6 D̄8 = (Ē8 , l̄8) ← Use (6) // Construct airship control laws
7 ?8 (C + ΔC), \8 (C + ΔC) ← Update using D̄8 during time interval [C, C + ΔC)
8 C ← C + ΔC

Steering Phase (Lines 5-7) Compute the weighted centroids { ¯̀8} associated with the matching M̄ obtained above
using (4). During time interval [C, C + ΔC), where ΔC > 0, let each airship 8 update its position and heading angle using
the state-feedback control law D̄8 = (ā8 , l̄8) : R2 × S1 → R × R given as follows [14, 29]:

Ē8 (?8 , \8) = −^
〈[

cos \8 , sin \8
]>
, ?8 − ¯̀8

〉
, (6a)

l̄8 (?8 , \8) = 2^ arctan
©­­­­«
〈[
− sin \8 , cos \8

]>
, ?8 − ¯̀8

〉
〈[

cos \8 , sin \8
]>
, ?8 − ¯̀8

〉 ª®®®®¬
, (6b)

where ^ > 0 is a controller gain.

Theorem 1 (Convergence of Algorithm 1). Suppose that for every drone-customer matching M ∈ M, the cost function
�∗ is differentiable at the associated joint weighted centroid -. Then, for any given initial joint airship position p0 ∈ R2# ,
p(C) converges to a local minimum of �∗ as C →∞.

Proof. See Appendix.

C. Cluster-Based Distributed Drone-Customer Allocation Subroutine
In practice, a multi-airship fleet may encounter communication delays or failures due to adverse weather conditions.

To model these scenarios, we assume that each airship can only communicate with its neighboring airships, as determined
by the topology of a time-varying undirected graph C (C) = (A,L(C)). Here, L(C) denotes the set of communication
links, comprising unordered pairs of airships that can exchange information at time C.

Assumption 1 (Communication Graph). For all C ≥ 0, the airship communication graph C (C) is connected.

To address this scenario, we propose a decentralized solution method for the LSAP in (5) (see Algorithm 2) based on
the consensus alternating direction method of multipliers (C-ADMM) [24, 30]. C-ADMM is a distributed optimization
technique well-suited for certain classes of separable optimization problems, including LSAPs [31, 32]. For LSAPs
specifically, C-ADMM-based algorithms can achieve optimal solutions, in contrast to popular auction-based heuristics
[33], and even outperform the distributed Hungarian-based methods [34] in terms of computation time [32]. Unlike the
general C-ADMM approaches in the references cited above, however, Algorithm 2 is slightly modified to address the
unique characteristics of the considered problem in which the decision makers are clustered agents.

Algorithm 2 is derived as follows. Observe first that problem (9) is in a form that describes the drone-customer
allocation problem at the level of drones, not airships. To restructure the problem, we define the decision variable -8 of
each airship 8 ∈ A as the aggregated decision variables of all its subagents:

-8 =

[
x81 . . . x8"8

]
. (7)
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Algorithm 2: Cluster-Based C-ADMM Algorithm
1 X80 ∈ R

 × (for all 8 ∈ A), Λ80 ← 0 (for all 8 ∈ A), : ← 0 // Initialization
2 while not converged do
3 for 8 ∈ A do in parallel
4 Send X8

:
to neighbors in N8 (C) // Transmit information

5 Λ8
:+1 ← Use (11) // Dual update

6 X8
:+1 ← Use (12) // Primal update

7 : ← : + 1

Subsequently, we rewrite the problem in the form

minimize
-1 ,...,-#

∑
8∈A

tr (�8 (p(C))-8) (8a)

subject to
∑
8∈A

-81 = 1, (8b)

->8 1 = 1, ∀ 8 ∈ A, (8c)
-8 ∈ {0, 1} ×"8 , ∀ 8 ∈ A, (8d)

where �8 (p) denotes the vertical concatenation of row vectors 28 9 (p)> for all 9 ∈ D8 . This problem can be relaxed into
a linear program by replacing the integer constraints in (8d) with box constraints -8 ∈ [0, 1] ×"8 :

minimize
-1 ,...,-#

∑
8∈A

tr (�8 (p(C))-8) (9a)

subject to
∑
8∈A

-81 = 1, (9b)

->8 1 = 1, ∀ 8 ∈ A, (9c)
-8 ∈ [0, 1] ×"8 , ∀ 8 ∈ A, (9d)

Given that the original problem (8) is feasible and has a linear objective, any optimal solution to the relaxed problem (9)
is attained at a vertex of the feasible set and corresponds also to an optimal solution of problem (5). Now, letting each
airship 8 maintain a local copy X8 = [- 81, . . . , -

8
#
] of X = [-1, . . . , -# ], the distributed form of the above problem can

be described as

minimize
X1 ,...,X#

∑
8∈A

tr
(
�8 (p(C))- 88

)
(10a)

subject to
∑
;∈A

- 8; 1 = 1, ∀ 8 ∈ A, (10b)

- 8>8 1 = 1, ∀ 8 ∈ A, (10c)
- 88 ∈ [0, 1] ×"8 , ∀ 8 ∈ A, (10d)

X8 = X; , ∀ 8 ∈ A, ∀ ; ∈ N8 (C), (10e)

where N8 (C) denotes the set of neighbors of airship 8 at time C. Under Assumption 1, problem (10) can be shown to be
equivalent to problem (8) (see, e.g., [30, 32, 35]). Lastly, under the assumption that Λ80 = 0 for all 8 ∈ A, C-ADMM
leads to the update rules below (details can be found in [31, 32]).

Dual Update Procedure (Line 5) Each airship 8 updates the matrix Λ8 according to

Λ8:+1 = Λ8: + d
∑

;∈N8 (C )

(
X8: − X;:

)
, (11)

where d > 0 is a penalty parameter.
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Primal Update Procedure (Line 6) Each airship 8 updates its local variable X8 by solving the following (convex)
quadratic program:

minimize
X8

tr
(
�8 (p(C))- 88

)
+ 1>

(
Λ8: ◦ X8

)
1 + d

∑
;∈N8 (C )






X8 − X8
:
+ X;

:

2






2

�

(12a)

subject to
∑
;∈A

- 8; 1 = 1, (12b)

- 8>8 1 = 1, (12c)
- 8; ∈ [0, 1]

 ×"8 , ∀ ; ∈ A, (12d)

where ◦ denotes the Hadamard product (i.e., element-wise matrix multiplication) and ‖ · ‖� denotes the Frobenius norm
of a matrix.

Similar to Algorithm 1, Algorithm 2 alternates between the two procedures described above. As shown in [32,
Theorem 1], the sequence of local variables {X8

:
}:=0,1,... (for all 8 ∈ A) converges to an optimal solution of problem (8),

provided that Assumption 1 holds. Therefore, when Algorithm 2 is used as a subroutine in line 3 of Algorithm 1, the
overall algorithm retains the same convergence guarantees as in the case of no communication constraints.

V. Numerical Simulation
This section presents numerical simulation results that illustrate the performance of the proposed algorithms. We

consider a fleet of five airships (# = 5), each carrying four drones ("8 = 4, ∀ 8 ∈ A). The initial airship locations are
selected uniformly at random from the set {G ∈ R2 : ‖G‖ ≤ 1}. There are total 20 customers ( = 20) divided into three
groups, each containing 6, 7, and 7 customers, respectively. The locations of customers in each group are randomly
sampled from normal distributions centered at [2, 2]>, [−2, 2]>, and [0,−2]>. See Figure 3 for the sampled initial
airship and customer locations. The following two scenarios are considered:

1) Scenario 1: The airship communication graph C (C) is complete for all C ≥ 0, and every drone has a unit
transportation capability: F8 9: = 1 for all 8, 9 , and : .

2) Scenario 2: The airship communication graph C (C) is determined by the Delaunay triangulation [36] of the
airship locations {?8 (C)}, and each drone has varying transportation capabilities, with the values of F8 9: drawn
uniformly at random from the interval [1, 5].

The remaining parameters are as follows: ^ = 0.01 (controller gain), n = 1× 10−3 (convergence threshold for Algorithm
1), ΔC = 10 (sampling time), and d = 0.05 (penalty parameter for Algorithm 2).

Scenario 1 In this scenario, the Hungarian algorithm [28] is used as a centralized subroutine in line 3 of Algorithm 1
to solve the LSAP in (5). Simulation snapshots at three different time instants are shown in Figures 4a, 4b, and 4c, with
black lines indicating the drone-customer allocations, gray dashed lines indicating communication links, and colored

Fig. 3 Initial airship and customer locations, where triangles represent airships and circles represent customers.
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Fig. 4 Simulation snapshots and time evolutions of total transportation cost, control inputs, and drone-customer
allocations in Scenario 1.

polygons indicating the convex hulls of customers allocated to the subagents of airship 8. It can be immediately observed
that airships tend to allocate to their drones the customers that are closest to their current locations; this is evidenced
by the convex hulls of customers for different airships never intersecting at any time. Figure 4d illustrates the time
evolution of the transportation cost, which clearly shows that the total transportation cost monotonically decreases
over time. Figures 4e and 4f depict the evolution of the control inputs of each airship over time, all converging to zero.
Figure 4g shows the change of drone-customer allocations over time; one notable observation here is that while airships
successfully converge to a matching-based centroidal configuration, drone-customer allocations continue to chatter,
failing to reach a consensus. The reason this occurs is that due to the uniform transportation capabilities of drones,
the LSAP in (5) admits multiple solutions at the centroidal configuration to which airships converge. The chattering,
however, is confined to allocations within each airship and does not prevent airships from converging to a centroidal
configuration.

Scenario 2 In this scenario, Algorithm 2 is used as a distributed subroutine in line 3 of Algorithm 1. To solve the
convex quadratic program in the primal update procedure given in (12), OSQP [37] is used (see Appendix for details).
Similar to Figure 4, Figure 5 presents key results from the simulation of Scenario 2, including simulation snapshots and
time evolutions of total transportation cost, control inputs, and drone-customer allocations. For brevity, we remark only
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Fig. 5 Simulation snapshots and time evolutions of total transportation cost, control inputs, and drone-customer
allocations in Scenario 2.

on notable differences from Scenario 1. Unlike the previous scenario, the convex hulls of customers often intersect (see
airships 1 and 2 in Figure 5c), as the drone-customer allocations are heavily influenced by the values of F8 9: . Moreover,
the allocations successfully reach a consensus as airships approach their centroidal configuration.

VI. Conclusion
This work addressed the problem of simultaneously locating airships (clustered agents) and allocating their delivery

drones (subagents) to serve a set of customers. A two-phase, gradient descent-based algorithm was proposed to achieve
efficient airship placement and drone-customer allocation. Additionally, a decentralized drone-customer allocation
subroutine based on the consensus alternating direction method of multipliers was introduced to deal with communication
constraints. Simulation results demonstrated the performance of the proposed algorithms. Future research directions
include, for instance, modifying Algorithm 1 to accommodate nonlinear resource allocation models.
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Appendix
Proof of Theorem 1 Let � = (�1, . . . , �# ) : R2# → R2# be an algorithm that maps a given joint airship position p
to its future location after performing one iteration of the two phases of Algorithm 1 (i.e., after time ΔC has elapsed). Let
M̄ ∈ arg minM∈M �M (p) be the matching obtained by solving the LSAP in (5) and -̄ be the associated joint weighted
centroid given by (4). By construction of the control law in (6), the following two statements are true:

(i) For all 8 ∈ A, ‖�8 (p) − ¯̀8 ‖ ≤ ‖?8 − ¯̀8 ‖.
(ii) If p ≠ -̄, then there exists an 8 ∈ A such that ‖�8 (p) − ¯̀8 ‖ < ‖?8 − ¯̀8 ‖.

The proof can be found in [29] (see also [14]). These properties imply that the set of fixed points of � (i.e., p such that
p = � (p)) coincides with the set of matching-based centroidal configurations.

By the global convergence theorem (see [14] or [38]), � converges to the set of its fixed points if �∗ is a descent
function for �, i.e., �∗ (� (p)) ≤ �∗ (p), where the inequality is strict if p ≠ -̄. To prove this condition, note that

�∗ (� (p)) − �∗ (p) = min
M∈M

{�M (� (p))} − �M̄ (p) ≤ �M̄ (� (p)) − �M̄ (p) .

Using (4) yields

�∗ (� (p)) − �∗ (p) ≤
∑
8∈A

∑
( 9 ,: ) ∈M̄8

F8 9:

(
‖�8 (p) − I: ‖2 − ‖?8 − I: ‖2

)
=

∑
8∈A

(
U8

(
‖�8 (p)‖2 − ‖?8 ‖2

)
− 2 (�8 (p) − ?8)>

( ∑
( 9 ,: ) ∈M̄8

F8 9:I:

)
︸                  ︷︷                  ︸

= U8 ¯̀8

)

=
∑
8∈A

U8

(
‖�8 (p) − ¯̀8 ‖2 − ‖?8 − ¯̀8 ‖2

)
,

where U8 =
∑
( 9 ,: ) ∈M̄8

F8 9: > 0. In view of conditions (i) and (ii) above, the desired result immediately follows.
Finally, the set of matching-based centroidal configurations is nonempty and finite, as |M| =  !. Given all the

conditions above, it follows from [14, Proposition 1.4] that � converges to one of its fixed points, namely a matching-
based centroidal configuration. As mentioned in Section IV.A, any matching-based centroidal configuration is a local
minimum of �∗, provided that this function is differentiable thereat. This completes the proof.

Quadratic Program for OSQP To formulate problem (12) into the form required by OSQP,

minimize
G

1
2
G>%G + @>G (13)

subject to ; ≤ �G ≤ D, (14)

we define the following variables:

% = 2d |N8 (C) |�, @ = vec
�8 (p(C)) + Λ8: − d

∑
;∈N8 (C )

(
X8: + X;:

) , � =


%̂

&̂8

�

 , ; =


1
1
0

 , D =


1
1
1

 , (15)

where %̂ ∈ R × 2 is a horizontal block matrix with  identity matrices concatenated horizontally, and &̂8 ∈ R"8× 2

represents a block matrix of all zeros where the 9-th horizontal block component of the :-th row of &̂8 is set to 1 for all
9 and : .
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