
Coupled Task Assignment for Hierarchical Multi-Agent Systems
in Disaster Response Missions: A Nested Hungarian Approach

Ahmed Khalil∗, Yoonjae Lee†, and Efstathios Bakolas‡

The University of Texas at Austin, Austin, TX, 78712

Gregory M. Gremillion§

U.S. Army DEVCOM Army Research Laboratory, Adelphi, MD, 20783

This work formulates a novel variant of the classical linear task assignment problem, which
we refer to as the coupled linear task assignment (CLTA) problem. This formulation models the
task assignment process involving two-echelon agents and tasks, where the goal is to optimally
assign tasks to agents within the same echelon to maximize a global utility while complying
with the coupling constraints imposed by the problem’s hierarchical structure. After discussing
the problem’s inherent properties that prevent the use of standard relaxation techniques, we
propose a variant of the Hungarian algorithm, the nested Hungarian algorithm, that solves the
problem exactly in polynomial time. We demonstrate the superior performance of the proposed
algorithm by benchmarking it against seven open-source and commercial MILP solvers. Finally,
we apply our proposed approach to a fictitious disaster response scenario motivated by the
January 2025 Southern California wildfires in the Greater Los Angeles area.

I. Nomenclature

0 = Zero vector or matrix
1 = One vector or matrix
AD = Set of upper-level agents
TD = Set of upper-level tasks
Aℓ = Set of lower-level agents
Tℓ = Set of lower-level tasks
=D = Number of upper-level agents, where =D = |AD |
<D = Number of upper-level tasks, where <D = |TD |
=ℓ = Number of lower-level agents, where =ℓ = |Aℓ |
<ℓ = Number of lower-level tasks, where <ℓ = |Tℓ |
A8

ℓ
= Set of subagents of upper-level agent 8, where A8

ℓ
⊆ Aℓ

T 9

ℓ
= Set of subtasks of upper-level task 9 , where T 9

ℓ
⊆ Tℓ

A:
D = Set of superagents of lower-level agent : , where A:

D ⊆ AD

T ;
D = Set of supertasks of lower-level task ;, where T ;

D ⊆ TD
28 9 = Utility of assigning upper-level agent 8 to upper-level task 9

3:; = Utility of assigning lower-level agent : to lower-level task ;

G8 9 = Binary assignment variable for upper-level assignment between agent 8 and task 9

H:; = Binary assignment variable for lower-level assignment between agent : and task ;

∗Graduate Student, Department of Aerospace Engineering and Engineering Mechanics, Email: akhalil@utexas.edu
†Ph.D. Candidate, Department of Aerospace Engineering and Engineering Mechanics, Email: yol033@utexas.edu
‡Associate Professor, Department of Aerospace Engineering and Engineering Mechanics, Associate Fellow AIAA, Email: bako-

las@austin.utexas.edu
§Researcher, Humans in Complex Systems Division, Email: gregory.m.gremillion.civ@army.mil

Distribution Statement A: Approved for public release; distribution is unlimited.

1

II. Introduction
Disaster response scenarios require rapid, coordinated action across different geographical areas by multiple agents

to limit damage, preserve lives, and safeguard critical infrastructure [1, 2]. Unmanned aerial vehicles (UAVs), also
known as drones, have shown great promise in such conditions by aiding or replacing human responders in dangerous
and hard-to-reach areas. Their successful deployment in numerous disaster relief efforts highlights their ability to
perform tasks that would be difficult or impossible for humans, such as surveying damage, locating survivors, and
delivering supplies [3]. Some of the advantages of drones include fast deployment, high mobility, and the ability to
hover or maneuver in wreckage and confined spaces, enabling quick data collection and aid delivery in time-critical
situations [3]. Indeed, UAVs have been used to locate earthquake victims and provide real-time imagery to rescue
teams [4]. Recent work has proposed a two-echelon vehicle routing problem involving trucks and drones to support
post-disaster humanitarian operations [5]. Such examples signify the critical role of multi-UAV systems in disaster
management and motivate research into the optimal coordination of these heterogeneous systems.

Given the high stakes in disaster response and the need to consider complex couplings (e.g., how drones and aircraft
can cooperate to complete a task), in this work, we focus on the coupled task assignment problem for hierarchical
systems. Rather than treating a disaster response as a monolithic set of tasks, the hierarchical task assignment formulation
decomposes the mission into subtasks assigned at different levels (e.g., high-level objectives for crewed aircraft or large
UAVs and lower-level tasks for drone teams). This enables us to explicitly maximize a task utility function for the entire
system, resulting in an assignment that optimally coordinates the two tiers of agents. In the disaster response model
adopted in this paper, aircraft equipped with fleets of specialized drones are assigned to operate in designated areas
based on both the planes’ and drones’ capabilities. Each aircraft differs in terms of speed, altitude range, and flight
endurance, influencing how quickly it can reach specific locations and the types of terrain it can navigate. Higher-altitude
planes can access distant areas faster, while low-altitude aircraft are better suited for regions with complex terrain or
obstacles. Additionally, aircraft may originate from different locations, affecting their response times and the availability
of resources they can collect en route to the disaster area. Figure 1 shows a fictitious instance of the disaster response
scenario considered in this paper.

Once deployed, each aircraft releases its drones to perform specific tasks tailored to the needs of the disaster zone.
The drones are equipped with distinct capabilities: water-fighting drones for fire suppression, lighting drones to illuminate
areas for nighttime operations, medical drones for delivering supplies and first aid, and camera-equipped drones for
real-time surveillance and search-and-rescue missions. By leveraging the unique capabilities of both aircraft and drones,
the framework aims to maximize coverage, minimize response time, and deliver precise interventions tailored to the
situation at hand. The challenge lies in matching the right aircraft to the appropriate areas and allocating drone tasks
effectively, ensuring that resources are optimally utilized. To model this problem, we assume that the utility functions
for both levels are linear.

Mixed-integer linear programming (MILP) provides a powerful framework for optimal decision-making in multi-
UAV task assignment problems. In a typical MILP formulation of the task assignment problem, binary decision variables
can represent whether a given agent (e.g., aircraft or drone) is assigned to a specific task, while linear constraints enforce
mission-related specifications (e.g., one agent per task, capacity and time windows, etc.). This approach translates the
assignment problem into an optimization model, where the objective is often to maximize the overall mission utility (or
minimize operational cost). For example, a MILP approach was adopted for multi-robot task allocation in an unknown
environment [6]. A MILP approach was also undertaken to optimally assign and schedule coordinated air-to-ground
tasks for multiple air vehicles [7]. MILP has also been used to efficiently assign vehicles to suppress enemy air defense
missions or intercept enemy incoming missiles [8, 9]. Additionally, MILP has been used to address task allocation and
trajectory planning in the presence of obstacles and connectivity constraints [10]. In addition to MILP, a variety of
alternative approaches have been explored to solve task assignment problems, such as auctions [11, 12], decentralized
variants of the Hungarian algorithm [13], potential game-theoretic approaches [14], and the consensus alternating
direction methods of multipliers (ADMM) [15], to name a few. Recent work also highlights how communication fidelity
and delays impact the quality of task assignment decision-making in robotic networks [16].

In this work, we formalize the coupled linear task assignment (CLTA) problem, which links two linear assignment
layers through additional constraints that capture the hierarchical dependencies between aircraft and drones. These
couplings prevent the use of standard relaxation methods, such as linear programming relaxations. We therefore develop
a variant of the Hungarian algorithm [17] that solves the CLTA problem optimally in polynomial time. We benchmark
our proposed algorithm against several off-the-shelf MILP solvers. Additionally, we showcase how our methodology
can be applied to fictitious simulations based on the January 2025 Southern California wildfires.

The rest of this paper is structured as follows. In Section III, we formulate the novel CLTA problem for hierarchical

2

Figure 1 Pictorial description of a hierarchical multi-UAV system in a disaster response mission (not to scale)

multi-UAV systems and discuss its inherent properties that prevent the use of standard relaxation techniques. Section V
presents the nested Hungarian algorithm, which optimally solves the CLTA problem in polynomial time. Numerical
simulation results are demonstrated in Section VI. Finally, VII concludes the paper with directions for future research.

III. Coupled Linear Task Assignment
This section presents a mathematical formulation of the coupled task assignment problem for hierarchical groups of

agents and tasks. To generalize our formulation to other real-world problems, we will refer to the aircraft as upper-level
agents and the drones as lower-level agents. The corresponding tasks are referred to as upper-level tasks and lower-level
tasks. Throughout, we will use the term entity to refer to either an agent or a task.

A. Problem Formulation
The coupled linear task assignment (CLTA) problem considers =D upper-level agents and <D upper-level tasks, as well

as =ℓ lower-level agents and <ℓ lower-level tasks. Let AD = {1, 2, . . . , =D}, TD = {1, 2, . . . , <D}, Aℓ = {1, 2, . . . , =ℓ },
and Tℓ = {1, 2, . . . , <ℓ } represent the sets of indices of the upper-level agents, upper-level tasks, lower-level agents, and
lower-level tasks, respectively. Furthermore, let ED ⊆ AD × TD and Eℓ ⊆ Aℓ × Tℓ denote the sets of feasible upper-level
agent-task pairs and lower-level agent-task pairs, respectively.

Each upper-level agent 8 has a nonempty associated set A8
ℓ
⊆ Aℓ of subagents (i.e., lower-level agents) that are

coupled to 8, and each upper-level task 9 has a nonempty associated set T 9

ℓ
⊆ Tℓ of subtasks (i.e., lower-level tasks) that

are coupled to 9 . In this work, we assume a partition structure for the couplings. Formally,⋃
8∈AD

A8
ℓ = Aℓ , A8

ℓ ∩A
8′

ℓ = ∅, ∀8, 8′ ∈ AD, 8 ≠ 8′,⋃
9∈TD

T 9

ℓ
= Tℓ , T 9

ℓ
∩ T 9′

ℓ
= ∅, ∀ 9 , 9 ′ ∈ TD, 9 ≠ 9 ′.

The coupling is imposed such that a subagent can only choose a subtask if the corresponding superagent has also chosen
the relevant supertask. Specifically, given an upper-level agent-task matching MD ⊂ ED, the corresponding set of
admissible lower-level agent-task pairs is defined by

Eℓ (MD) = {(:, ;) ∈ Eℓ : (8: , 9;) ∈MD} , (1)

3

where 8: denotes the index of the superagent of : and 9; denotes the index of the supertask of ;.
Lastly, let 2 : ED → R+ and 3 : Eℓ → R+ denote the upper-level and lower-level utility functions, respectively.

The objective of the CLTA problem is to find the pair of upper-level matching M★
D ⊂ ED and lower-level matching

M★
ℓ
⊂ Eℓ (M★

D) that maximizes the global utility given by � (MD,Mℓ) =
∑

4∈MD
2(4) +∑4∈Mℓ

3 (4).

B. Optimization Model
The proposed mathematical programming model of the CLTA problem maximizes the global utility subject to

coupling, one-to-one assignment, and binary constraints:

maximize
∑
8∈AD

∑
9∈TD

28 9G8 9 +
∑
:∈Aℓ

∑
;∈Tℓ

3:;H:; (2a)

subject to H:; ≤ G8 9 , ∀: ∈ A8
ℓ ,∀; ∈ T

9

ℓ
,∀8 ∈ AD,∀ 9 ∈ TD, (2b)∑

8∈AD

G8 9 ≤ 1, ∀ 9 ∈ TD, (2c)∑
9∈TD

G8 9 ≤ 1, ∀8 ∈ AD, (2d)∑
:∈Aℓ

H:; ≤ 1, ∀; ∈ Tℓ , (2e)∑
;∈Tℓ

H:; ≤ 1, ∀: ∈ Aℓ , (2f)

G8 9 ∈ {0, 1}, ∀8 ∈ AD,∀ 9 ∈ TD, (2g)
H:; ∈ {0, 1}, ∀: ∈ Aℓ ,∀; ∈ Tℓ . (2h)

The binary decision variables G8 9 ∈ {0, 1},∀8 ∈ AD, 9 ∈ TD and H:; ∈ {0, 1},∀: ∈ Aℓ , ; ∈ Tℓ are introduced such that
G8 9 = 1 if task 9 is assigned to agent 8 at the upper level, and H:; = 1 if task ; is assigned to agent : at the lower level.
Additionally, 28 9 ≥ 0 denotes the utility of assigning upper-level task 9 to upper-level agent 8, and 3:; ≥ 0 denotes the
utility of assigning lower-level task ; to lower-level agent : . Constraint (2b) ensures that no lower-level assignment is
allowed unless its corresponding upper-level assignment is also selected. Constraints (2c) and (2d) enforce that each
upper-level task is assigned to at most one agent, and each upper-level agent can take on at most one task. Similarly,
constraints (2e) and (2f) enforce one-to-one assignments at the lower level. Finally, constraints (2g) and (2h) restrict all
decision variables to binary values.

C. Illustrative Example
To illustrate the CLTA problem, consider =D = <D = 2 and =ℓ = <ℓ = 4. Let AD = {1, 2}, TD = {1, 2},

Aℓ = {1, 2, 3, 4}, and Tℓ = {1, 2, 3, 4}. The coupling sets in this example are defined as: A1
ℓ
= {1, 2}, A2

ℓ
= {3, 4},

T 1
ℓ
= {1, 2}, and T 2

ℓ
= {3, 4}. Let GD = (AD ∪ TD,AD × TD) and let Gℓ = (Aℓ ∪ Tℓ ,Aℓ × Tℓ) denote the (complete)

bipartite graphs representing all feasible agent-task assignments at the upper and lower levels. Figure 2 provides a
graphical overview of the graphs in both levels, where dashed rectangles group nodes into sets, with the corresponding
set label displayed. In the lower-level graph, solid rectangles enclose nodes representing groups of agents or tasks
coupled to a specific upper-level entity. Additionally, node colors are used to highlight the coupling between the two
levels.

In Figure 2, edges connecting nodes indicate potential assignments between agents and tasks. Each edge has a
corresponding weight that reflects the utility of the assignment. The objective is to select the optimal subset of these
edges (i.e., matching) to maximize the overall utility while satisfying the hierarchical relationships and assignment
constraints. Note that due to the large number of edges at the lower level, the corresponding weights for these edges are
omitted.

To model the assignment process, we introduce x ∈ {0, 1}=D<D and y ∈ {0, 1}=ℓ<ℓ to represent the upper-level and
the lower-level decision vectors, respectively, where each binary variable represents whether an agent selects a task:

x = [G11 G12 G21 G22]>, and
y = [H11 H12 H13 H14 H21 H22 H23 H24 H31 H32 H33 H34 H41 H42 H43 H44]>.

4

AD

1

2

TD

1

2

211

221

212

222

Aℓ

1

2

3

4

Tℓ

1

2

3

4

A1
ℓ

A2
ℓ

T 1
ℓ

T 2
ℓ

Figure 2 Upper-level and lower-level agent-task graphs

The coupling constraints in (2b) ensure that lower-level decisions remain consistent with the upper-level assignments.
Table 1 includes all of the coupling constraints in order of lower-level tasks.

1 2 3 4

H11 ≤ G11 H12 ≤ G11 H13 ≤ G12 H14 ≤ G12

H21 ≤ G11 H22 ≤ G11 H23 ≤ G12 H24 ≤ G12

H31 ≤ G21 H32 ≤ G21 H33 ≤ G22 H34 ≤ G22

H41 ≤ G21 H42 ≤ G21 H43 ≤ G22 H44 ≤ G22

Table 1 Coupling constraints ordered by lower-level tasks

By concatenating all the binary decision variables, G8 9 and H:; , into a single vector, z = [x> y>]>, the coupling
constraints can be written in the compact form:

%z ≤ @,

where % is a matrix comprised of entries in {−1, 0, 1} and @ is a vector of zeros. Figure 3 is a visual representation of
the matrix %, which represents the vectorized coupling constraints in Table 1 ordered by the lower-level tasks.

In this representation, the red squares denote entries of −1, the blue squares represent 1, and the white squares
indicate 0. Note that in this example, all of the lower-level assignments are coupled to an upper-level assignment. To
decouple a lower-level assignment from an upper-level assignment, one can remove its corresponding row.

IV. LP Relaxation and Integrality Gap
Boolean (or 0-1 integer) linear programs (BLPs) can represent a variety of combinatorial optimization problems

that are known to be NP-hard. Examples include the traveling salesman problem [18, 19], for which solutions cannot be
found in polynomial time unless P=NP. While there exist certain classes of these problems that can be solved efficiently,
in particular, when the constraint matrix is totally unimodular [20, 21], or more generally when the problem is totally
dual integral [22–24], these conditions are generally not satisfied.

Definition 1 (Totally Unimodular Matrix). A matrix is totally unimodular (TUM) if every square submatrix has a
determinant of 0, 1, or −1.

TUM matrices are particularly significant because, with an integral right-hand side, they ensure integer optimal
solutions to linear programs. Specifically, if a matrix % is TUM and a vector @ is integral, then the binary constraints
z ∈ {0, 1}= can be relaxed to its convex hull, i.e., z ∈ [0, 1]=, by appending bounds:

maximize F>z

subject to %̄z ≤ @̄,
(3)

5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Column Index

Ro
w

In
de

x
−1

1

0

Legend

Figure 3 Coupling constraint matrix %

where

%̄ :=


%

�

−�

 , @̄ :=


@

1
0

 .
The linear program in Equation (3) then has integral optima for any utility vector F. However, the CLTA problem given
in (2) lacks the total unimodularity property.

Remark 1. A trivial CLTA instance is one where each upper-level agent/task has only one lower-level agent/task,
i.e., |A8

ℓ
| = 1,∀8 ∈ AD and |T 9

ℓ
| = 1,∀ 9 ∈ TD. In such a case, the lower-level can be augmented into the upper-level,

and the problem can be solved as a standard linear task assignment problem.

Proposition 1. Any nontrivial CLTA instance that contains, for some fixed upper-level pair (8, 9), at least two feasible
lower-level choices on one side (i.e., either a single lower-level agent with two candidate lower-level tasks or vice versa)
has a constraint matrix that is not TUM.

Proof. Consider the simplest case with one upper-level agent, 8, and one upper-level task, 9 . At the lower level, let there
be one lower-level agent :1 ∈ A8

ℓ
and two lower-level tasks ;1, ;2 ∈ T 9

ℓ
∗. Let G denote the upper-level decision for (8, 9),

and H1 := H:1;1 , H2 := H:1;2 the lower-level decisions. Ignoring box constraints, the relevant inequalities are:

H1 ≤ G, H2 ≤ G, H1 + H2 ≤ 1, (4)

which can be written as: 
−1 1 0
−1 0 1
0 1 1

︸ ︷︷ ︸
�


G

H1

H2

 ≤

0
0
1

 . (5)

The 3 × 3 submatrix � has determinant 2, hence it is not unimodular. Since every nontrivial coupled linear task
assignment problem will contain the above submatrix, by definition, every nontrivial coupled linear task assignment
problem will not have a totally unimodular constraint matrix.

Remark 2. The TUM condition is sufficient but not necessary for integrality. Nevertheless, the LP relaxation of the
CLTA problem can attain a fractional optimal solution. Consider the nontrivial instance from Proposition 1 with one

∗The symmetric case with two lower-level agents and one lower-level task is analogous.

6

upper-level pair (8, 9), a single lower-level agent :1 ∈ A8
ℓ
, and two lower-level tasks ;1, ;2 ∈ T 9

ℓ
. Relax the binary

constraints to G, H1, H2 ∈ [0, 1], and consider the following cost functions 28 9 = 0 and 3:1;1 = 3:1;2 = 1. The feasible
polyhedron is described by H1 ≤ G, H2 ≤ G, H1 + H2 ≤ 1, and 0 ≤ G, H1, H2 ≤ 1, whose vertices are:

(0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 0, 1),
(

1
2 ,

1
2 ,

1
2

)
. (6)

However, evaluating the linear objective 28 9G + 3:1;1 H1 + 3:1;2 H2 at these vertices yields the values {0, 0, 1, 1, 1},
respectively, so the fractional vertex (12 ,

1
2 ,

1
2) is optimal. Consequently, CLTA problems cannot be solved efficiently

using standard linear programming (LP) relaxation techniques while guaranteeing integral optima, as is done for classical
linear task assignment problems. The polyhedron can be plotted on a 3D plot, as Figure 4 illustrates the three half-spaces
H1 ≤ G (red), H2 ≤ G (orange), and H1 + H2 ≤ 1 (blue); vertices are shown as black circles.

H2
H1

G

H1 ≤ G
H2 ≤ G

H1 + H2 ≤ 1

Figure 4 Polyhedron defined by the simplest nontrivial CLTA problem

V. Nested Hungarian Method
The presence of a fractional vertex in the relaxed polytope (Remark 2) implies that standard LP relaxations cannot

generally be relied upon to recover integral CLTA solutions. We therefore pursue a combinatorial method based on the
Hungarian algorithm. The idea is to solve, for every upper-level pair (8, 9), the associated lower-level assignment to
optimality and augment its contribution into a combined utility 2̂8 9 . We can then solve a single upper-level assignment
with these combined utilities and, finally, extract the corresponding lower-level matches. This yields a simple nested
Hungarian procedure with polynomial runtime.

We first impose the following assumption to allow for the use of the Hungarian algorithm as a subroutine to solve
auxiliary assignment problems in our proposed algorithm. Note that this assumption is not restrictive and can always
hold, as any imbalance can be addressed by introducing dummy agents or tasks with zero utility.

Assumption 1 (Balanced Assignment). The number of agents and tasks in the upper level is equal, i.e. =D = <D.
Additionally, for all 8 ∈ AD and 9 ∈ TD, the numbers of agents and tasks in the lower level are equal, i.e. |A8

ℓ
| = |T 9

ℓ
|.

The proposed solution method for the CLTA problem is summarized in Algorithm 1. The algorithm, which is a
variant of the Hungarian algorithm for single-level assignment problems, works as follows. In line 3, for all upper-level
agent-task pairs (8, 9), we find the corresponding optimal lower-level assignment vector y8→ 9 by solving the following

7

Algorithm 1: Nested Hungarian algorithm for the CLTA problem

Input :Index sets AD, TD,Aℓ , Tℓ ; coupling maps {A8
ℓ
}8∈AD

, {T 9

ℓ
} 9∈TD

; utilities 28 9 , 3:; .
Output :Upper assignments x★ ∈ {0, 1}=D<D ; lower assignments y★ ∈ {0, 1}=ℓ<ℓ .
Solve every lower-level assignment and construct the combined upper-level utility:

1 for 8 ∈ AD do
2 for 9 ∈ TD do
3 y8→ 9 ← Solve (7) using Hungarian (e.g., [25]) // Lower-level assignment for fixed (8, 9)
4 2̂8 9 ← 28 9 +

∑
:∈A8

ℓ

∑
;∈T 9

ℓ

3:; H
8→ 9

:;
// Combined upper-level utility

Solve combined upper-level assignments:
5 x★← Solve (8) using Hungarian (e.g., [25]) // Upper-level assignment

Extract lower-level assignments:
6 for 8 ∈ AD do
7 for 9 ∈ TD do
8 if G★

8 9
= 1 then

9 for : ∈ A8
ℓ

do
10 for ; ∈ T 9

ℓ
do

11 H★
:;
← H

8→ 9

:;
// Select the stored lower-level assignment

12 return (x★, y★)

lower-level assignment problem (for fixed 8 and 9) using the Hungarian algorithm:

maximize
∑
:∈A8

ℓ

∑
;∈T 9

ℓ

3:;H:; (7a)

subject to
∑
:∈A8

ℓ

H:; ≤ 1, ∀; ∈ T 9

ℓ
, (7b)∑

;∈T 9

ℓ

H:; ≤ 1, ∀: ∈ A8
ℓ , (7c)

H:; ∈ {0, 1}, ∀: ∈ A8
ℓ ,∀; ∈ T

9

ℓ
. (7d)

Subsequently, we update the (8, 9)th combined upper-level utility 2̂8 9 as in line 4. Once this procedure is complete for
all 8 and 9 , we solve in line 5 the following upper-level assignment problem with combined utilities 2̂8 9 :

maximize
∑
8∈AD

∑
9∈TD

2̂8 9G8 9 (8a)

subject to
∑
8∈AD

G8 9 ≤ 1, ∀ 9 ∈ TD, (8b)∑
9∈TD

G8 9 ≤ 1, ∀8 ∈ AD, (8c)

G8 9 ∈ {0, 1}, ∀8 ∈ AD,∀ 9 ∈ TD, (8d)

which gives us the optimal upper-level assignment vector x★ for the CLTA problem. We then extract the optimal lower-
level assignment variables corresponding to each optimal upper-level agent-task pair from the previously computed
lower-level assignments.

Algorithm 1 runs in polynomial time and is guaranteed to achieve the optimal assignment for the CLTA problem, as
verified in the following proposition.

Proposition 2. For the CLTA problem in (2), under Assumption 1, Algorithm 1 runs in time $
(
(=D)2 (=ℓ)3

)
and attains

the optimal solution.

8

Proof. Time complexity: For each upper-level agent 8 ∈ AD and each upper-level task 9 ∈ TD, the Hungarian algorithm
is used in line 3 to compute the optimal lower-level assignment y8→ 9 by solving a problem of size =ℓ × =ℓ (under
Assumption 1). At each stage, the Hungarian algorithm takes $ ((=ℓ)2) arithmetic operations (if implemented with the
appropriate data structures [26]). The computational complexity of the Hungarian algorithm involving =ℓ stages is thus
$ ((=ℓ)3) [25]. Since there are (=D)2 invocations of the Hungarian algorithm, the total complexity for computing y8→ 9

is $ ((=D)2 (=ℓ)3). The final step of applying the Hungarian algorithm in line 5 has a complexity of $ ((=D)3), which is
dominated by what precedes in the nested loops. Thus, the overall time complexity is $ ((=D)2 (=ℓ)3).

Optimality: By construction, the algorithm computes the optimal lower-level assignments y8→ 9 for each pair (8, 9)
using the Hungarian algorithm, ensuring that the lower-level assignments are optimal for the given upper-level assignment.
Thus, the combined utility 2̂8 9 accurately reflects the total utility of assigning upper-level agent 8 to upper-level task
9 . The Hungarian algorithm is then applied to compute the optimal upper-level assignment x★. Since the Hungarian
algorithm guarantees an optimal assignment, x★ is optimal for the combined utility. Finally, the optimal lower-level
assignments y★ are extracted by selecting the previously computed lower-level assignments y8→ 9 corresponding to the
optimal upper-level assignments x★.

VI. Numerical Simulations

A. Wildfire Response Simulations
For numerical simulations, we consider a CLTA problem motivated by the January 2025 Southern California wildfires

in the Greater Los Angeles area. At the upper level, five airtankers (ULAs) are based at Los Angeles International
(LAX), John Wayne/Santa Ana (SNA), Hollywood–Burbank (BUR), Ontario (ONT), and Long Beach (LGB) airports.
These five ULAs must each be assigned to one of five simultaneous wildfires (Palisades, Eaton, Hurst, Sunset, and
Kenneth), resulting in a 5 × 5 upper-level utility matrix. We consider two simulation scenarios. In the balanced case,
every airtanker has eight drones, and each wildfire has eight subtasks, resulting in a total of 40 lower-level agents and
40 lower-level tasks. Formally, |A8

ℓ
| = 8 for all 8 and |T 9

ℓ
| = 8 for all 9 , so |Aℓ | = |Tℓ | = 40. In the unbalanced case,

the number of drones and subtasks associated with each pair varies. To preserve the one-to-one assignment structure,
we add dummy agents with zero utility until each aircraft has eight lower-level agents and each fire has exactly eight
lower-level tasks.

To capture the operational trade-offs inherent in wildfire emergency response, we develop a hierarchical utility
function framework comprising two levels. At each level, the utility functions are formulated as a function of problem-
specific factors. We note that the factors included in this framework are not exhaustive; additional components can be
readily integrated to accommodate further complexities found in real-world applications.

Weighted Suitability Design
We define a single weighted suitability function and use it at both levels. It measures how well a capability profile

aligns with a demand profile by computing per-attribute agreement ratios in [0, 1] (perfect agreement yields 1) and
taking a convex combination with normalized attribute weights.

Let K0 be the finite index set of all attribute types considered (e.g., capacity, endurance, sensor quality). Let
(0:):∈K0 denote nonnegative capability attributes (aircraft or drone), (1:):∈K0 the corresponding nonnegative demand
attributes (wildfire or task), and (F:):∈K0 nonnegative attribute weights. We compare only attributes present in all three
vectors; formally,

K := {: ∈ K0 | 0: is defined, 1: is defined, F: is defined} = supp(0) ∩ supp(1) ∩ supp(F), (9)

where for a vector E, supp(E) denotes the set of indices for which E is defined. Define normalized weights F̃: :=
F:

/ ∑
ℎ∈K Fℎ (if

∑
ℎ∈K Fℎ = 0, set the suitability to 0 by convention). For each : ∈ K, set

A: :=


1, max{0: , 1:} = 0,
min{0: , 1:}
max{0: , 1:}

, otherwise,
Suit(0, 1, F) :=

∑
:∈K

F̃: A: ∈ [0, 1] . (10)

For airtankers, Suit captures compatibility between tanker capabilities (e.g., retardant capacity, maneuverability) and
wildfire demands (e.g., drop volume, terrain constraints). For drones, the same construction captures how drone metrics
(e.g., payload, endurance, sensor quality) match task demands. The ratio form gives full credit when both sides are zero
for an attribute and smoothly penalizes mismatches otherwise.

9

Airtanker–Wildfire Utility Design
At the upper level, the pairing of airtankers to wildfires also includes a response-efficiency component that favors

short arrival times. Let ?8 ∈ R2 be the location of base 8, @ 9 ∈ R2 the location of fire 9 , and E8 > 0 the maximum speed
of airtanker 8. Define

C8 9 :=
‖?8 − @ 9 ‖2

E8
, RespEff8 9 :=

1
1 + C8 9

∈ (0, 1] . (11)

In operational settings, C8 9 may incorporate factors more realistic than the Euclidean-speed metric, such as winds, routing,
and airspace restrictions.

Drone–Task Utility Design
We model two effects at the lower level: a hard feasibility check (specialization) and a graded fit via the same

suitability function (10). Each task ; specifies (i) a set of required categorical capabilities 'cat
;

(e.g., suppression,
lighting, mapping) and (ii) quantitative minimum requirements indexed by �min

;
with thresholds {\;,6}6∈�min

;
(e.g.,

payload, endurance, sensor resolution). Each drone : provides (i) a set of available categorical capabilities (cat
:

and (ii)
quantitative metrics {k:,6}. Drone : satisfies the specialization of task ; if all requirements are met:

'cat
; ⊆ (cat

: and k:,6 ≥ \;,6 ∀ 6 ∈ �min
; . (12)

The specialization indicator is:

SpecMatch:; :=

{
1, 'cat

;
⊆ (cat

:
and k:,6 ≥ \;,6 ∀6 ∈ �min

;
,

0, otherwise.
(13)

Thus, SpecMatch:; = 1 enforces a hard feasibility filter: a drone is eligible only if it has every required tag and meets
every minimum threshold.

Upper and Lower Utilities
With a constant _ ∈ [0, 1], the upper-level utility combines response efficiency and the unified suitability:

28 9 := _RespEff8 9 + (1 − _) Suit(q8 , l 9 , F), (14)

where q8 are aircraft capabilities, l 9 are wildfire demands, and F are attribute weights.
The lower-level utility of assigning drone : to task ; is given by:

3:; := SpecMatch:; × Suit(k: , \; , F;), (15)

where k: are drone metrics, \; are task demands, and F; are task-specific weights.

Assignment Results
Figure 5 depicts the balanced case. Each airtanker is shown as a ‘★’ symbol, and every wildfire as an ‘x’ symbol

enclosed by a dashed circle. The two elements in a pair of assignments share the same fill color. Around every star,
there are eight circular markers, each representing a drone, while each dashed circle is ringed by eight ‘+’ symbols that
represent the associated lower-level tasks. Within every aircraft-fire assignment, there are eight drone-task pairings.
The algorithm dispatches the Hollywood–Burbank (BUR) airtanker to the Eaton (EAT) fire, John Wayne/Santa Ana
(SNA) to Kenneth (KEN), Long Beach (LGB) to Palisades (PAL), Ontario (ONT) to Hurst (HUR), and Los Angeles
International (LAX) to Sunset (SUN). In the accompanying bipartite diagrams of Figure 7, each aircraft–wildfire sector
contains eight drones and eight subtasks, and the solution forms the required one‑to‑one matching without any dummy
vertices.

Figure 6 shows the unbalanced case. To balance the assignments, we introduce dummy agents/tasks, which are
depicted with a white fill color. Any assignment that involves at least one dummy agent/task will have a black border
color. The upper-level assignments remain the same, except that Ontario (ONT) is now assigned to Kenneth (KEN), and
John Wayne/Santa Ana (SNA) is assigned to Hurst (HUR). The accompanying bipartite diagrams, which visualize the
assignments, are provided in Figure 8.

10

Figure 5 Hierarchical task assignment for Los Angeles fires with balanced structure

Figure 6 Hierarchical task assignment for Los Angeles fires with dummy variables

11

Figure 7 Upper-level and lower-level assignments with balanced structure

12

Figure 8 Upper-level and lower-level assignments with dummy variables

13

B. Benchmarks
We benchmark our proposed solution against various off-the-shelf MILP solvers, specifically CPLEX [27], MOSEK

[28], PuLP (CBC backend) [29, 30], COIN-OR CLP [31], SCIP [32], HiGHS [33], and Gurobi [34]. All benchmarking
experiments were conducted on a desktop computer equipped with an Intel(R) Core(TM) i9-10900K CPU at 3.70 GHz.
We consider three different problem sizes: small, medium, and large. For each category, we uniformly sample the
number of upper-level agents (=D), the number of upper-level tasks (<D), the number of lower-level agents (=ℓ), and the
number of lower-level tasks (<ℓ). The parameter ranges are defined as follows:

• Small: =D = <D ∈ [1, 5] and =ℓ = <ℓ ∈ [1, 25].
• Medium: =D = <D ∈ [5, 10] and =ℓ = <ℓ ∈ [25, 100].
• Large: =D = <D ∈ [11, 20] and =ℓ = <ℓ ∈ [121, 400].
Each problem instance is randomly generated by uniformly sampling values within the specified ranges. We evaluate

solver performance based on runtime, comparing both the relative and absolute performance of each solver. We use
performance profiles [35] to evaluate the efficiency of the solver across a set of # benchmark problems. For each
problem ? and solver B, let C?,B denote the solve time. The relative performance ratio is defined as:

D?,B =
C?,B

minB′ C?,B′
,

which compares solver B to the best solver for problem ?. The relative performance profile is the function:

5 AB (g) =
1
#

#∑
?=1

I(D?,B ≤ g),

where I is the indicator function. The performance profile function gives the fraction of problems solved by B within
a factor g of the solve time of the best solver. To account for absolute speed (solve time), we also define the absolute
performance profile:

5 0B (g) =
1
#

#∑
?=1

I(C?,B ≤ g),

which measures the fraction of problems solved by B within g seconds, independent of other solvers.
We present performance profiles for each problem size, small, medium, and large, as shown in Figures 9, 10, and

11, respectively. Figure 9a shows that, on the small test set, the proposed algorithm solves every instance at the lowest
observed runtime, reaching a relative-profile value of one at a performance ratio of g = 3. The next-best MILP solver,
Gurobi, achieves a relative-profile value of one at a performance ratio of g = 70, while the other solvers lag further
behind. Figure 9b confirms the result as it shows that the proposed method clears the entire batch in well under 10−3

seconds, while all the other solvers take at least an order of magnitude longer. Figure 10a shows that, on the medium
test set, the proposed algorithm solves every instance at the lowest observed runtime, attaining a relative‑profile value of
one at a performance ratio of g = 1. The next-best MILP solvers, Gurobi and CPLEX, don’t achieve full coverage until
g ≈ 20. Figure 10b corroborates this result as the proposed method clears the entire medium batch in less than 10−2

seconds, whereas Gurobi and CPLEX require at least 10−1 seconds. Figure 11a presents the large benchmark results.
Once again, the proposed algorithm has a relative profile value of one at g = 1, indicating that it achieves the best
performance on every large problem instance. The next best solver, Gurobi, reaches full coverage only after g ≈ 100.
The absolute profile in 11b shows that the proposed algorithm solves all of the large problems in around 10−1 seconds,
while other solvers take from 2 seconds to more than a minute.

Figure 12 plots solve time against problem size, where size is defined as the total number of decision variables plus
the total number of constraints. For very small problem instances, those with fewer than 102 combined variables and
constraints, the proposed method and Gurobi exhibit very similar runtimes, both solving the problem in less than a
millisecond. Once the problem size exceeds 102, the proposed algorithm’s curve sits uniformly below Gurobi’s, and the
performance gap widens steadily with increasing scale.

CPLEX_PY MOSEK PULP_CBC_CMD COIN_CMD
SCIP_PY HiGHS Proposed Gurobi

Solver legend

14

(a) Relative performance profile (b) Absolute performance profile

Figure 9 Performance profiles for the small problem set

(a) Relative performance profile (b) Absolute performance profile

Figure 10 Performance profiles for the medium problem set

(a) Relative performance profile (b) Absolute performance profile

Figure 11 Performance profiles for the large problem set

15

Figure 12 Solve time of each solver for different problem sizes

VII. Conclusion
In this work, we introduced the Coupled Linear Task Assignment (CLTA) problem to model hierarchical aircraft-

drone coordination for disaster response. The formulation explicitly links two assignment layers through feasibility
couplings, capturing the conditions under which lower-level (drone-task) decisions are permissible given upper-level
(aircraft-wildfire) choices. We demonstrated that standard LP relaxations need not be integral, which clarifies why
classical linear-assignment guarantees do not apply. The proposed algorithm, Nested Hungarian, exploits the CLTA’s
structure to obtain the optimal solution in polynomial time. We show that this procedure attains exact optimality with
significantly lower computational cost than generic MILP solvers.

Empirically, synthetic simulations motivated by the January 2025 Southern California wildfire response in the
Greater Los Angeles area illustrated how mission utilities can combine response efficiency and capability with demand
suitability at both levels. Benchmarks across small, medium, and large instances showed that the specialized Nested
Hungarian method consistently delivered the fastest runtimes (especially at larger scales) while matching MILP objective
values in its domain of applicability.

A key next step is to decentralize CLTA by pushing computation to aircraft and drone teams and coordinating via
lightweight consensus or auction protocols, so assignment updates remain feasible and near-optimal under intermittent,
delayed, or lossy links to any central coordinator. We will analyze robustness guarantees, including feasibility preservation
and bounded suboptimality, under packet loss, stale information, and asynchronous communication.

Acknowledgments
Research was sponsored by the Army Research Laboratory and was accomplished under Cooperative Agreement

Number W911NF-22-2-0091. The views and conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies; either expressed or implied, of the Army Research Laboratory or
the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation herein.

References
[1] Bharosa, N., Lee, J., and Janssen, M., ‘‘Challenges and obstacles in sharing and coordinating information during multi-

agency disaster response: Propositions from field exercises,’’ Information Systems Frontiers, Vol. 12, No. 1, 2010, pp. 49–65.
https://doi.org/10.1007/s10796-009-9174-z, URL https://doi.org/10.1007/s10796-009-9174-z.

[2] Queralta, J. P., Taipalmaa, J., Can Pullinen, B., Sarker, V. K., Nguyen Gia, T., Tenhunen, H., Gabbouj, M., Raitoharju, J., and
Westerlund, T., ‘‘Collaborative Multi-Robot Search and Rescue: Planning, Coordination, Perception, and Active Vision,’’ IEEE
Access, Vol. 8, 2020, pp. 191617–191643. https://doi.org/10.1109/ACCESS.2020.3030190.

[3] Lyu, M., Zhao, Y., Huang, C., and Huang, H., ‘‘Unmanned Aerial Vehicles for Search and Rescue: A Survey,’’ Remote Sensing,
Vol. 15, No. 13, 2023. https://doi.org/10.3390/rs15133266, URL https://www.mdpi.com/2072-4292/15/13/3266.

[4] Qi, J., Song, D., Shang, H., Wang, N., Hua, C., Wu, C., Qi, X., and Han, J., ‘‘Search and Rescue Rotary-Wing UAV
and Its Application to the Lushan Ms 7.0 Earthquake,’’ Journal of Field Robotics, Vol. 33, No. 3, 2016, pp. 290–321.
https://doi.org/https://doi.org/10.1002/rob.21615, URL https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21615.

16

https://doi.org/10.1007/s10796-009-9174-z
https://doi.org/10.1007/s10796-009-9174-z
https://doi.org/10.1109/ACCESS.2020.3030190
https://doi.org/10.3390/rs15133266
https://www.mdpi.com/2072-4292/15/13/3266
https://doi.org/https://doi.org/10.1002/rob.21615
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21615

[5] Faiz, T. I., Vogiatzis, C., and Noor-E-Alam, M., ‘‘Computational Approaches for Solving Two-Echelon Vehicle and UAV Routing
Problems for Post-Disaster Humanitarian Operations,’’ Expert Systems with Applications, Vol. 237, 2024, p. 121473. https://doi.
org/https://doi.org/10.1016/j.eswa.2023.121473, URL https://www.sciencedirect.com/science/article/pii/S0957417423019759.

[6] Atay, N., and Bayazit, B., ‘‘Mixed-Integer Linear Programming Solution to Multi-Robot Task Allocation Problem,’’ 2006.

[7] Schumacher, C., Chandler, P., Pachter, M., and Pachter, L., ‘‘UAV Task Assignment with Timing Constraints via Mixed-Integer
Linear Programming,’’ AIAA 3rd” Unmanned Unlimited” Technical Conference, Workshop and Exhibit, 2004, p. 6410.

[8] Darrah, M., Niland, W., and Stolarik, B., ‘‘Multiple UAV Dynamic Task Allocation Using Mixed Integer Linear Programming
in a SEAD Mission,’’ Infotech@Aerospace, 2005. https://doi.org/10.2514/6.2005-7164, URL https://arc.aiaa.org/doi/abs/10.
2514/6.2005-7164.

[9] Weintraub, I. E., Von Moll, A., Casbeer, D. W., and Manyam, S. G., ‘‘Virtual Target Selection for a Multiple-Pursuer–Multiple-
Evader Scenario,’’ Journal of Aerospace Information Systems, Vol. 0, No. 0, 2025, pp. 1–10. https://doi.org/10.2514/1.I011510,
URL https://doi.org/10.2514/1.I011510.

[10] Afonso, R. J., Maximo, M. R., and Galvão, R. K., ‘‘Task Allocation and Trajectory Planning for Multiple Agents in the Presence
of Obstacle and Connectivity Constraints with Mixed-Integer Linear Programming,’’ International Journal of Robust and
Nonlinear Control, Vol. 30, No. 14, 2020, pp. 5464–5491.

[11] Choi, H.-L., Brunet, L., and How, J. P., ‘‘Consensus-Based Decentralized Auctions for Robust Task Allocation,’’ IEEE
Transactions on Robotics, Vol. 25, No. 4, 2009, pp. 912–926. https://doi.org/10.1109/TRO.2009.2022423.

[12] Oh, G., Kim, Y., Ahn, J., and Choi, H.-L., ‘‘Market-Based Distributed Task Assignment of Multiple Unmanned Aerial Vehicles
for Cooperative Timing Mission,’’ Journal of Aircraft, Vol. 54, No. 6, 2017, pp. 2298–2310. https://doi.org/10.2514/1.C032984,
URL https://doi.org/10.2514/1.C032984.

[13] Samiei, A., and Sun, L., ‘‘Distributed Matching-By-Clone Hungarian-Based Algorithm for Task Allocation of Multiagent
Systems,’’ IEEE Transactions on Robotics, Vol. 40, 2024, pp. 851–863. https://doi.org/10.1109/TRO.2023.3335656.

[14] Bakolas, E., and Lee, Y., ‘‘Decentralized Game-Theoretic Control for Dynamic Task Allocation Problems for Multi-Agent
Systems,’’ 2021 American Control Conference (ACC), 2021, pp. 3228–3233. https://doi.org/10.23919/ACC50511.2021.
9483030.

[15] Lee, Y., Khalil, A., Bakolas, E., and Gremillion, G., ‘‘A Two-Phase Algorithm for Joint Task Assignment and Coordination
in Hierarchical Multi-Vehicle Systems,’’ AIAA SCITECH 2025 Forum, 2025. https://doi.org/10.2514/6.2025-2283, URL
https://arc.aiaa.org/doi/abs/10.2514/6.2025-2283.

[16] Safwat, M., and Devasia, S., ‘‘Accurate Decentralized Information Communication for Effective Decisions in Robotic Networks,’’
IEEE/ASME Transactions on Mechatronics, 2024, pp. 1–12. https://doi.org/10.1109/TMECH.2024.3477307.

[17] Kuhn, H. W., ‘‘The Hungarian Method for The Assignment Problem,’’ Naval Research Logistics Quarterly, Vol. 2, No. 1-2,
1955, pp. 83–97. https://doi.org/https://doi.org/10.1002/nav.3800020109, URL https://onlinelibrary.wiley.com/doi/abs/10.1002/
nav.3800020109.

[18] Korte, B., and Vygen, J., NP-Completeness, Springer Berlin Heidelberg, Berlin, Heidelberg, 2018, pp. 385–421. https:
//doi.org/10.1007/978-3-662-56039-6_15, URL https://doi.org/10.1007/978-3-662-56039-6_15.

[19] Korte, B., and Vygen, J., The Traveling Salesman Problem, Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 527–562.
https://doi.org/10.1007/978-3-540-71844-4_21, URL https://doi.org/10.1007/978-3-540-71844-4_21.

[20] Hoffman, A. J., and Kruskal, J. B., Integral Boundary Points of Convex Polyhedra, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2010. https://doi.org/10.1007/978-3-540-68279-0_3, URL https://doi.org/10.1007/978-3-540-68279-0_3.

[21] Veinott, A. F., Jr., and Dantzig, G. B., ‘‘Integral Extreme Points,’’ SIAM Review, Vol. 10, No. 3, 1968, pp. 371–372.
https://doi.org/10.1137/1010063, URL https://doi.org/10.1137/1010063.

[22] Giles, F., and Pulleyblank, W., ‘‘Total Dual Integrality and Integer Polyhedra,’’ Linear Algebra and its Applications, Vol. 25,
1979, pp. 191–196. https://doi.org/https://doi.org/10.1016/0024-3795(79)90018-1, URL https://www.sciencedirect.com/science/
article/pii/0024379579900181.

17

https://doi.org/https://doi.org/10.1016/j.eswa.2023.121473
https://doi.org/https://doi.org/10.1016/j.eswa.2023.121473
https://www.sciencedirect.com/science/article/pii/S0957417423019759
https://doi.org/10.2514/6.2005-7164
https://arc.aiaa.org/doi/abs/10.2514/6.2005-7164
https://arc.aiaa.org/doi/abs/10.2514/6.2005-7164
https://doi.org/10.2514/1.I011510
https://doi.org/10.2514/1.I011510
https://doi.org/10.1109/TRO.2009.2022423
https://doi.org/10.2514/1.C032984
https://doi.org/10.2514/1.C032984
https://doi.org/10.1109/TRO.2023.3335656
https://doi.org/10.23919/ACC50511.2021.9483030
https://doi.org/10.23919/ACC50511.2021.9483030
https://doi.org/10.2514/6.2025-2283
https://arc.aiaa.org/doi/abs/10.2514/6.2025-2283
https://doi.org/10.1109/TMECH.2024.3477307
https://doi.org/https://doi.org/10.1002/nav.3800020109
https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800020109
https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800020109
https://doi.org/10.1007/978-3-662-56039-6_15
https://doi.org/10.1007/978-3-662-56039-6_15
https://doi.org/10.1007/978-3-662-56039-6_15
https://doi.org/10.1007/978-3-540-71844-4_21
https://doi.org/10.1007/978-3-540-71844-4_21
https://doi.org/10.1007/978-3-540-68279-0_3
https://doi.org/10.1007/978-3-540-68279-0_3
https://doi.org/10.1137/1010063
https://doi.org/10.1137/1010063
https://doi.org/https://doi.org/10.1016/0024-3795(79)90018-1
https://www.sciencedirect.com/science/article/pii/0024379579900181
https://www.sciencedirect.com/science/article/pii/0024379579900181

[23] Edmonds, J., and Giles, R., ‘‘A Min-Max Relation for Submodular Functions on Graphs,’’ Studies in Integer Programming,
Annals of Discrete Mathematics, Vol. 1, edited by P. Hammer, E. Johnson, B. Korte, and G. Nemhauser, Elsevier, 1977, pp.
185–204. https://doi.org/https://doi.org/10.1016/S0167-5060(08)70734-9, URL https://www.sciencedirect.com/science/article/
pii/S0167506008707349.

[24] Schrijver, A., ‘‘On Total Dual Integrality,’’ Linear Algebra and its Applications, Vol. 38, 1981, pp. 27–32. https://doi.org/https:
//doi.org/10.1016/0024-3795(81)90005-7, URL https://www.sciencedirect.com/science/article/pii/0024379581900057.

[25] Mills-Tettey, G. A., Stentz, A., and Dias, M. B., ‘‘The Dynamic Hungarian Algorithm for the Assignment Problem with
Changing Costs,’’ Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-07-27, 2007.

[26] Lawler, E. L., Combinatorial Optimization: Networks and Matroids, Courier Corporation, 2001.

[27] IBM ILOG CPLEX Optimizer, IBM Corporation, 2019. URL http://www.ibm.com/software/integration/optimization/cplex-
optimizer.

[28] MOSEK ApS, MOSEK Optimizer, 2019. URL https://www.mosek.com.

[29] Mitchell, S., O’Sullivan, M., and Dunning, I., ‘‘PuLP: A Linear Programming Toolkit for Python,’’ INFORMS Journal on
Computing, Vol. 23, No. 4, 2011, pp. 631–633.

[30] COIN-OR Foundation, ‘‘CBC (COIN-OR Branch-and-Cut Solver),’’ , 2019. URL https://github.com/coin-or/Cbc.

[31] COIN-OR Foundation, ‘‘CLP(COIN-OR Linear Programming Solver),’’ , 2019. URL https://github.com/coin-or/Clp.

[32] Bolusani, S., Besançon, M., Bestuzheva, K., Chmiela, A., Dionísio, J., Donkiewicz, T., van Doornmalen, J., Eifler, L., Ghannam,
M., Gleixner, A., Graczyk, C., Halbig, K., Hedtke, I., Hoen, A., Hojny, C., van der Hulst, R., Kamp, D., Koch, T., Kofler, K.,
Lentz, J., Manns, J., Mexi, G., Mühmer, E., Pfetsch, M. E., Schlösser, F., Serrano, F., Shinano, Y., Turner, M., Vigerske, S.,
Weninger, D., and Xu, L., ‘‘The SCIP Optimization Suite 9.0,’’ Technical report, Optimization Online, February 2024. URL
https://optimization-online.org/2024/02/the-scip-optimization-suite-9-0/.

[33] Huangfu, Q., and Hall, J. A. J., ‘‘Parallelizing the Dual Revised Simplex Method,’’ Mathematical Programming Computation,
Vol. 10, No. 1, 2018, pp. 119–142. https://doi.org/10.1007/s12532-017-0130-5.

[34] Gurobi Optimization, LLC, ‘‘Gurobi Optimizer Reference Manual,’’ , 2023. URL https://www.gurobi.com.

[35] Dolan, E. D., and Moré, J. J., ‘‘Benchmarking Optimization Software with Performance Profiles,’’ Mathematical Programming,
Vol. 91, No. 2, 2002, pp. 201–213. https://doi.org/10.1007/s101070100263, URL https://doi.org/10.1007/s101070100263.

18

https://doi.org/https://doi.org/10.1016/S0167-5060(08)70734-9
https://www.sciencedirect.com/science/article/pii/S0167506008707349
https://www.sciencedirect.com/science/article/pii/S0167506008707349
https://doi.org/https://doi.org/10.1016/0024-3795(81)90005-7
https://doi.org/https://doi.org/10.1016/0024-3795(81)90005-7
https://www.sciencedirect.com/science/article/pii/0024379581900057
http://www.ibm.com/software/integration/optimization/cplex-optimizer
http://www.ibm.com/software/integration/optimization/cplex-optimizer
https://www.mosek.com
https://github.com/coin-or/Cbc
https://github.com/coin-or/Clp
https://optimization-online.org/2024/02/the-scip-optimization-suite-9-0/
https://doi.org/10.1007/s12532-017-0130-5
https://www.gurobi.com
https://doi.org/10.1007/s101070100263
https://doi.org/10.1007/s101070100263

	Nomenclature
	Introduction
	Coupled Linear Task Assignment
	Problem Formulation
	Optimization Model
	Illustrative Example

	LP Relaxation and Integrality Gap
	Nested Hungarian Method
	Numerical Simulations
	Wildfire Response Simulations
	Benchmarks

	Conclusion

