Wisco Stirling Engine Redesign

ME 449 Redesign & Prototype Fabrication Semester Project Presentation 5 May 2022

Before

Introduction

- Main design criteria:
 - Aesthetics
 - Build quality
 - Speed
- Re-design criteria:
 - Reducing frictional contact and fluid losses
 - Minimize conduction between plates
 - Smoothen motion
 - Identify customer's design preferences

Reducing Flywheel Mass

• Inertia: tendency of an object to resist changes in its velocity, Newton's first law

- Lower mass results in higher acceleration
 - Reaching max speed faster
 - Less reliant on kick start

 Mass = 0.31 [g]
 Mass = 0.27 [g]

 Moment of Inertia = 1.26
 Moment of Inertia = 1.31

 [lb-in]
 [lb-in]

Minimizing Heat Loss Between Plates

- Heat transferred between plates reduces temperature difference
- Bolts halved from 12 to 6
- Thermal conductivity:
 - Stainless steel: ~14 [W/mK]
 - Nylon Plastic: ~.25 [W/mK]

$$\dot{q}_{bolts} = N_{bolts} * k_{bolt} * A_c * \frac{1}{L} * (T_{RT} - T_{cold})$$

$$\dot{q}_{stainless} = 0.851 [V]$$

$$\dot{q}_{plastic} = 0.007598 [W]$$

• 99.1% reduction in conductive heat transfer through bolts

Smoothening the Engine'

- Ideal engine should:
 - Minimize acceleration
 - Isolate motions to reduce friction
 - Follow sinusoidal motion

$$P_{loss,friction} = F_{friction} * V = \mu * N * V_t$$

$$P_{loss,viscous} = F_{friction} * V = \mu * \pi * D * L * V_t^2$$

- Counterbalances
 - Eliminate speed variations
 - Moment on each side of shaft equal
 - Originally had motion W 3D print (4.7g)
 - Interfered with linkages

Reducing Frictional Losses at Link Contacts

- Issues with bent links:
 - Horizontal forces introduced
 - Inconsistent assembly
- 3D printed link:
 - Slightly lower weight (10% infill)
 - More rigid
 - Better fit, machinability
- Bearings and shoulder bolts:
 - Dynamic coefficient of friction = 0.1
 - Originally (steel on steel) = .42

Fluid Losses in Power Piston Cylinder

$$\Delta h_{A,B,contract} = \frac{V_1^2}{2 \cdot g} \cdot \left[f_1 \cdot \frac{I_s}{D_o} + K_{lam,contract} \right] + \frac{V_2^2}{2 \cdot g} \cdot f_2 \cdot \frac{I_i}{D_i} \text{ head loss of contraction (downward stroke of piston)}$$

∆h_{A.B.contract}

 $\Delta P_{contract}$ pressure drop through contraction q

<mark>∆h</mark> A,B	$= \frac{V_1^2}{2 \cdot g} \cdot f_1 \cdot \left[\frac{I_s + I_i}{D_o}\right]$	head loss through redesigned cylinder base
---------------------	--	--

$$\Delta h_{A,B} = \frac{\Delta P_{tube,down}}{\rho_{air} \cdot g} \text{ pressure drop on downward stroke}$$

Pair

	Original	Redesign
Downward Stroke	ΔP _contraction = 0.02489 Pa	$\Delta P_{downward} = 0.005177 Pa$
Upward Stroke	$\Delta P_{expansion} = 0.02505 Pa$	$\Delta P_upward = 0.005177 Pa$

Pressure loss is 4.81 times less in redesigned part.

No measured increase in engine speed after testing.

Improving Aesthetics and Build Quality

• Baseline scores were below average:

Aesthetics score: 7.37 Average: 7.91 Build Quality score: 7.93 Average: 8.11

- Survey
 - Audience for survey: attendees of graduation party
 - Top Plate Color
 - Metal Finish
 - Popular Wisconsin Icons

Survey Results

Final Aesthetics Score: 9.89 Average: 9.55

Final Build Quality Score: 9.64 Average: 9.56

Testing Plan and Results

- Metronome app
- Test after each design change
- Eliminate changes that slow engine

Design Change	RPM
Baseline Build	77
Cylinder Base	77 (no definitive change)
Flywheel	Not measured, expected ~ 70-80
Counter Balance	87
Linkages with shoulder bolts and sleeve bearings	155
Testing Day (sitting in sunlight)	212

Summary

- Design improvements achieved:
 - Nearly highest class points for aesthetics and build quality
 - Roughly 175% improvement in engine speed
 - Jeff Rappe's favorite engine
- Lessons Learned:
 - Importance of tolerancing and accuracy
 - Theoretical improvements don't always work
- Acknowledgements
 - Team Lab Pro Staff (Jeff, Jay, Eric, and Mike)
 - Prof. Pfefferkorn and Hemant
 - Team Lab Student Staff
 - Makerspace Staff

References

[1] "Moment of Inertia, Thin Disk". Hyperphysics.gsu.edu. [Online] <u>http://hyperphysics.phy-astr.gsu.edu/hbase/tdisc.html</u>. Accessed on May 3rd 2022.

Back-up Slides

Not required but often nice to have to help answer questions

Fluid Losses in Power Piston Cylinder

- V_1 = Velocity of air through glass cylinder
- V_2 = Velocity of air through original cylinder base
- Is = stroke length
- $I_i =$ length of cylinder base
- \dot{D}_{o} = Diameter of glass cylinder
- D_i = Diameter of original cylinder base
- $f_1 = friction factor in glass cylinder$
- f_2 = friction factor through constriction of cylinder base
- $\dot{K}_{lam,contract}$ = loss coefficient of flow moving through constriction g = gravitational constant
- $\triangle h_{A,B}$ = head loss from top to bottom of cylinder
- \overline{p}_{air} = density of air
- \triangle^{P} = pressure loss

 $\Delta h_{A,B,contract} = \frac{V_1^2}{2 \cdot g} \cdot \left[f_1 \cdot \frac{I_s}{D_o} + K_{lam,contract} \right] + \frac{V_2^2}{2 \cdot g} \cdot f_2 \cdot \frac{I_i}{D_i} \text{ head loss of contraction (downward stroke of piston)}$

 $\Delta h_{A,B,contract} = \frac{\Delta P_{contract}}{\rho_{air} \cdot g} \text{ pressure drop through contraction}$ $\Delta h_{A,B} = \frac{V_1^2}{2 \cdot g} \cdot f_1 \cdot \left[\frac{I_s + I_i}{D_o}\right] \text{ head loss through redesigned cylinder base}$

 $\Delta h_{A,B} = \frac{\Delta P_{tube,down}}{\rho_{air} \cdot g} \text{ pressure drop on downward stroke}$

