
Extended Kalman Filter and Linear Quadratic Regulator on
Differential Mobile Robot for Trajectory Tracking

Ahmed Khalil and Mohamed Safwat

Abstract— We describe a set of algorithms implemented on a
differential mobile robot for improved trajectory tracking. The
algorithms improve the single measurement state estimation
methods, such as dead reckoning, by integrating an IMU sensor
and fusing it with wheel encoders using an Extended Kalman
Filter. The project also implements a Linear Quadratic Regula-
tor (LQR) controller for better trajectory tracking performance
than a Proportional Integral Derivative (PID) controller. To
aid with tuning parameters and verifying algorithms, various
techniques were used to speed up development, such as using
simulation and visualization software like Gazebo and rviz. The
implementations take advantage of the Robot Operating System
(ROS), making it accessible to any differential mobile robot.

I. INTRODUCTION

Reliable navigation is a challenging field of research
in autonomous mobile robotics, and it can be split into
two categories: indoor and outdoor environments [1]. For
effective navigation, the robot must be successful in the four
building blocks of navigation: perception, the robot must
interpret its sensors to extract meaningful data; localization,
the robot must determine its position in the environment;
cognition, the robot must decide how to act to achieve its
goals; and motion control, the robot must modulate its motor
outputs to achieve the desired trajectory [2].

Out of the four navigation components, motion control has
received great research attention due to the complex system
models and lack of computational power on mobile robots.
In general, the dynamics and kinematics of a mobile robot
are nonlinear and consist of many uncertainty parameters.
Additionally, mobile robots are nonholonomic, meaning the
controllable degree of freedom is less than the total degrees
of freedom [3]. A mobile robot has three degrees of freedom,
i.e., its position in two axes and its orientation. However,
there are only two controllable degrees of freedom: the speed
of each wheel. An effective controller, therefore, requires
nonlinear and statistical approaches.

This project aimed to tackle the motion control problem
for wheeled mobile robots and improve the techniques pre-
sented in class. Specifically, the PID controller introduced
in class will be compared to a Linear Quadratic Regula-
tor (LQR) implementation, and the dead-reckoning method
discussed in class will be improved on by integrating an
inertial measurement unit (IMU) into an Extended Kalman
Filter (EKF). Starting from an initial configuration (position
and orientation), the goal of the controller is to navigate the
robot to reach a pre-defined final configuration. A hybrid

1Undergraduate students with the Department of Mechanical Engi-
neering at the University of Wisconsin Madison, Madison WI, USA
{ahmed.khalil, safwat}@wisc.edu

approach with the combination of statistical state estimation
and optimal control is proposed. First, the kinematics of the
robot are reviewed, and the configuration variables of the
robot are reformulated in the form of navigation variables.

The main contributions of this project are (i) a robust
controller for a differential mobile robot system with exter-
nal disturbances, (ii) an effective statistical state estimation
algorithm that incorporates wheel encoders and an IMU, and
(iii) open-source code and instructions for implementing all
algorithms.

II. DIFFERENTIAL ROBOT KINEMATICS

Many mobile robots use a drive mechanism known as a
differential drive. It consists of 2 drive wheels mounted on a
common axis, and each wheel can independently be driven
either forward or backward. While the velocity of each wheel
can be varied, for the robot to perform the rolling motion,
it must rotate about a point along its common left and right
wheel axis. A model of the differential mobile robot, with
two rear wheels and a frontal caster wheel, as shown in
Figure 1.

Fig. 1. Ideal differential robot with relative and global coordinates [4]

The rear wheels are actuated by two DC motors, while
the caster wheel is not. The voltage applied to the motor is
then directly related to the angular speeds of the wheel by
the motor equation,

Vmotor = RI + ktω + L
dI

dt
, (1)

where R is the motor winding resistance in (Ω), I is the
current flowing through the motor windings in (A), kt is the
motor constant in (V−s

rad), ω is the speed of the motor in
(rads), L is the motor inductance in (H), and dI

dt is the rate
of change of current in (As). The velocity of a single wheel
is then given by,

vwheel = ωwheelr, (2)

where r is the radius of the wheel. From Figure 1, the
vehicle’s center velocity is given by the following relation,

v =
vr + vl

2
, (3)

where vr and vl are the velocities of the right and left wheels,
respectively. The angular velocity of the mobile robot is also
related to the left and right wheel velocities, and is given by,

ω =
vr − vl

2l
. (4)

III. EXTENDED KALMAN FILTER
A Kalman filter was used to account for and filter the

noise in the sensor measurement. The Kalman Filter is
a recursive algorithm used for estimating the state of the
system by considering the measurement and all the noise
associated with it, which is typically a Gaussian distribution
for linear systems [5]. The algorithm consists of a prediction
that was based on the state space model and an update
that compared the measurement with the prediction. So, an
estimated state in the previous time step, along with a current
sensor measurement, was required to estimate the current
state, as shown in Figure 2.

Fig. 2. Kalman Filter for position estimates [5]

A discrete linear space model has the following form:

x̂k = Ax̂k−1 +Buk−1 + ϵk, (5)

where x̂k is the current estimated state, x̂k−1 is the previous
estimated state, uk−1 is the control input, A is the state
transition matrix, B was the input matrix, and ϵk is the
process noise, which is assumed to be Gaussian with a
covariance Qk, ϵ ∼ N (0, Qk). In this case, the state of the
mobile robot is given by:

x̂k =
[
x y θ vr vl

]T
. (6)

The control input is the commanded velocities of the left and
right wheels shown the below:

uk−1 =
[
vr,k−1 vl,k−1

]T
. (7)

The state transition matrix, A, is as follows:

A =

1 0 0 − 1

2 sin(θk−1)dt − 1
2 sin(θk−1)dt

0 1 0 1
2 cos(θk−1)dt

1
2 cos(θk−1)dt

0 0 1 dt
l −dt

l
0 0 0 1 0
0 0 0 0 1

 . (8)

The control input matrix relates the commanded velocities
to the state of the robot and is given by:

B =

0 0
0 0
0 0
1 0
0 1

 . (9)

An observation model was derived in the update step of the
Kalman filter. The observation model relates the predicted
sensor measurements given the estimated state of the robot
and is given by:

ŷk = Hx̂k + ϵ
′

k, (10)

where ŷk is the observation, H is the state to observation
transition matrix, and ϵ

′

k was Gaussian noise with covariance
Rk, ϵ

′

k ∼ N (0, Rk). In our case, the observation is from
each wheel’s encoder measurements and the gyroscope’s
yaw angle. Therefore, the state-to-observation matrix for the
encoders is given by,

Henc =

[
0 0 0 1 0
0 0 0 0 1

]
, (11)

and for the gyroscope,

Hgyr =
[
0 0 0 dt

l −dt
l

]
. (12)

IV. LINEAR QUADRATIC REGULATOR
With the improved state estimation due to implementing

an Extended Kalman Filter, a robust controller was needed to
improve the robot’s trajectory tracking abilities. We decided
to incorporate a Linear Quadratic Regulator (LQR) controller
due to it being relatively simple to implement yet very power-
ful. An LQR controller is a full-state feedback controller with
the same structure as a Pole Placement controller without
the need to pick pole locations. The LQR controller simply
finds the optimal gain, K, by optimizing between system
performance and system effort. For this project, the system
performance was defined as the robot’s state error from the
desired trajectory, while the system effort was defined as the
robot’s motor output. The purpose of the LQR controller in
this project is to compute the velocity of the wheels on the
mobile differential robot. The following is an explanation of
how the LQR was set up for this project.

The discrete state space model for this differential mobile
robot has the same form as in Equation (5); however, the state
matrix, A, is a 3x3 identity matrix, and the input matrix, B,
is defined as follows:

B =

cos(γt−1) ∗ dt 0
sin(γt−1) ∗ dt 0

0 dt

 , (13)

where γ is the yaw angle of the mobile robot. The state of
the mobile robot is defined as:

x =
[
xt−1 yy−1 γt−1

]T
. (14)

The control inputs are the robot’s center velocity and angular
velocity, as shown in Equation 15

u =
[
vt−1 γt−1

]T
, (15)

with the full space state equation of the robot shown in
Equation 16xt

yt
γt

 =

1 0 0
0 1 0
0 0 1

xt−1

yt−1

γt−1

+
cos(γt−1) ∗ dt 0
sin(γt−1) ∗ dt 0

0 dt

[
vt−1

ωt−1

]
.

(16)
With the full space state equation defined, the next step

is to solve for the optimal solution by iteratively solving
the finite-horizon, Discrete-time Algebraic Riccati equation
(DARE)

Pk−1 = ATPkA

− (ATPkB)(R+BTPkB)−1(BTPkA+NT) +Q, (17)

terminating after a maximum number of iterations or after
the positive definite solution satisfies a certain tolerance,
whichever happens first. The Q matrix defines the weights
on the states and will affect the robot’s state error. Once the
optimal P matrix has been found, the LQR gain is computed
using Equation 18,

Kk = (BTPk+1B +R)−1(BTPkA), (18)

where the R matrix defines the weights on the control
input in the cost function and will affect the robot’s wheel
commands. The optimal control inputs are then calculated
using Equation 19,

ustar = −Kxerror, (19)

where xerror is defined as the difference between the actual
and desired states, as shown below,

xerror = xactualstate − xdesiredstate. (20)

V. SYSTEM DESIGN

A. Block Diagram

With the state estimator and the controller designed, figure
3 displays the block diagram for the overall system. The
block diagram takes into account disturbances and sensor
delays.

Fig. 3. Closed-loop block diagram for system

B. Trajectory Generation

The desired state in the block diagram is the closest point
to the robot on a predefined trajectory. The trajectories used
were all cubic functions fitted on points specified by us. The
algorithms were tested on the following trajectory, which
had points of [(0,0), (0,1), (1,0)]. The trajectory is shown in
Figure 4.

Fig. 4. Trajectory used for testing the algorithm

The trajectories were all cubic functions as mobile robots
tend to have finer control over such trajectories [6].

C. System Hardware

The mobile robot’s main computer is a Rasberry Pi with
4GB RAM. The wheel encoders used were the Pololu 3081
Encoder kit, and the wheels were the Pololu 1423 60mm
wheels. Two IMUs were tested: the Adafruit MPU6050,
which has 6 DOF, and the Adafruit BNO055, which has
9 DOF. The caster wheel was the Pololu 2691 Ball Caster.
Figure 5 shows a photo of the assembled mobile robot.

Given the Raspberry Pi’s relatively low processing power,
this project was set up to be off-board control, with the
Raspberry Pi only being used to read IMU and encoder
sensor data. This project was run using ROS Networking
between a laptop running Linux and the Raspberry Pi. Each
device had its own launch file, with the laptop running
the controller.launch file and the Raspberry Pi running the
plant.launch file.

D. System Software

The entire project was done on ROS, where the hardware
was tested on ROS1, and the simulations were carried out
on ROS2. Figure 6 displays the rqt graph of the project,
detailing which nodes were being run onboard and which
were being run offboard.

Note that this screenshot was taken when the state estima-
tor being used was the dead reckoning. To change the state
estimator, the /robot controller/lqr DR node can subscribe to
/robot pose ekf instead of /robot pose estimated.

Fig. 5. Hardware on the physical mobile robot

Fig. 6. rqt graph of project running on the physical mobile robot

The BNO055 and MPU6050 IMU data were read using
Adafruit’s CircuitPython BNO055 library and Adafruit’s
CircuitPython MPU6050 library, respectively. This was sig-
nificantly faster and less prone to crashing than using the
Arduino’s serial port.

In order to test the safety and robustness of the LQR
controller, a simulation was done in Gazebo, which is a 3D
physics simulator that includes a physical model of the robot
and an environment. It also came with a differential robot
drive plugin that allowed us to subscribe to the odometry
topic and publish to the control inputs of the robot. The
mobile robot was modeled using a Simulation Description
Format (SDF) that included a body, 2 wheels, and a caster
wheel, as shown in Figure 7.

Finally, Gazebo was integrated with ROS2 with the avail-
able ros/gazebo package, and the communication between
ROS1 and ROS2 was done using a network bridge package
called ros1 bridge.

VI. VIDEO DEMONSTRATIONS

Demonstrations of the hardware tests and simulations can
be found in the following YouTube videos:

• EKF and LQR code in ROS1 on hardware: https:
//youtu.be/iVwEiv4ZqnQ

• LQR Simulation in ROS2 and Gazebo: https://
youtu.be/bsZWqP-vrrM

Fig. 7. Differential Mobile Robot SDF in Gazebo

VII. CONCLUSIONS

From testing on the basic trajectory mentioned earlier, the
LQR and EKF algorithms showed significant improvement
over PID and dead reckoning. Additionally, development of
software for simulating the mobile robot allows others to
test their algorithms without the requirement of hardware.
In the future, we would like to test our algorithms with
more complex trajectories as well as implementing a Madg-
wick/Complementary filter to account for the gyroscope
drifting.

REFERENCES

[1] A. De Luca, G. Oriolo, and C. Samson. Feedback control of a non-
holonomic car-like robot, pages 171–253. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1998.

[2] Roland Y. Siegwart, Illah Reza Nourbakhsh, and Davide Scaramuzza.
Introduction to autonomous mobile robots. 2004.

[3] Kevin M. Lynch and Frank C. Park. Modern Robotics: Mechanics,
Planning, and Control. Cambridge University Press, USA, 1st edition,
2017.

[4] Jose Filho, Elyson Carvalho, Lucas Molina, and Eduardo Freire. The
impact of parametric uncertainties on mobile robots velocities and pose
estimation. IEEE Access, PP:1–1, 05 2019.

[5] Claudio Urrea and Rayko Agramonte. Kalman filter: Historical
overview and review of its use in robotics 60 years after its creation.
Journal of Sensors, 2021:9674015, Sep 2021.

[6] B. Nagy and A. Kelly. Trajectory generation for car-like robots using
cubic curvature polynomials. In Proceedings of 3rd International
Conference on Field and Service Robotics (FSR ’01), pages 479 – 490,
June 2001.

