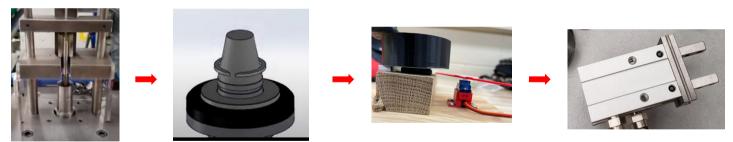


Automated Handvalve Assembly: Final Review


By: Ahmed Khalil, Erik Svetin, Hannah Fibikar, and Megan Sindelar

Presentation Outline

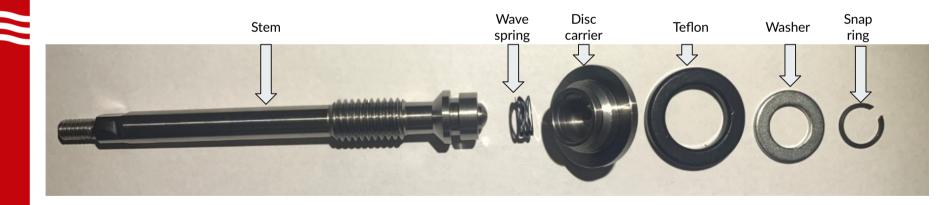
Background

Proposed Solution

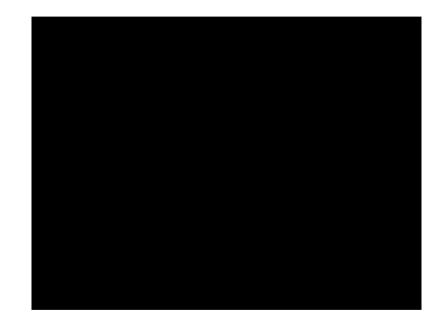
Future Steps

Currently, Parker employees assemble up to 312 handvalve stems each day by hand

Looking to fully automate it

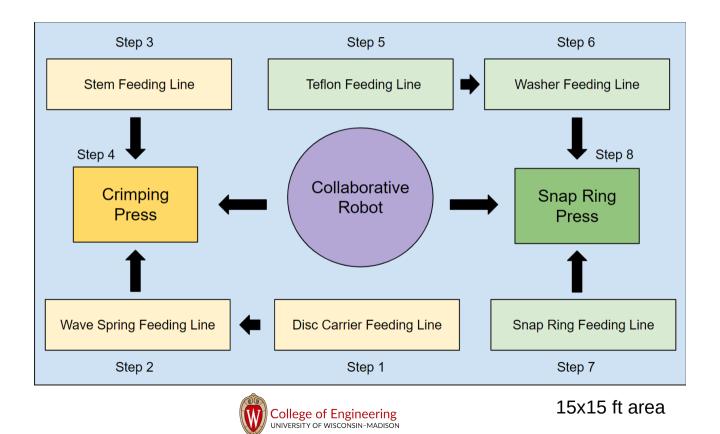

- Client needs:
 - o Cost
 - Performance
 - Safety
 - Self reliance
 - Footprint

There are 6 main components required for assembly

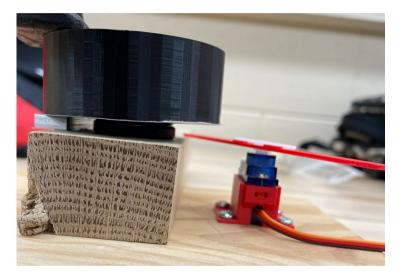

Components:

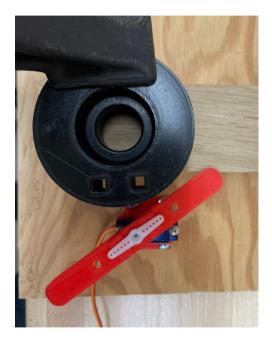
This assembly is composed of five main steps

- 1. Wave Spring into Disc carrier
- 2. Stem into Wave Spring
- 3. Crimp Wave Spring
- 4. Teflon and Washer onto Disc Carrier
- 5. Snap Ring onto Disc Carrier



Proposed Solution


The automated process can be efficient and compact



Feeding System

The current feeding system could be used for any part with a uniform cross-section

Parts will be separated using continuous servo motors

Proposed feeding system's pros and cons

Pros of feeding system:

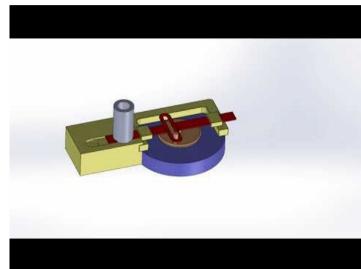
- Easy to setup and troubleshoot
- Cheap to construct

Cons of feeding system:

- Asymmetric rotation makes the dynamics more complicated
- Prone to failure if servo motor is moved out of position
- Dependant on the size of the stack
- Does not eliminate any of the robot's tasks

Future design iterations of feeding system

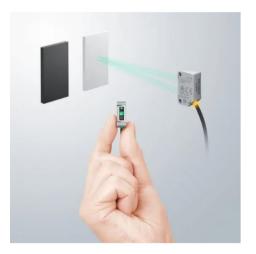
Rotary to linear mechanism


Pros:

- Push part directly to negative mold
- Simpler design dynamics
- Less prone to variation from stack size
- More accurate and precise

Cons:

- Does not eliminate any of the robot's tasks
- More components increase chance of failure



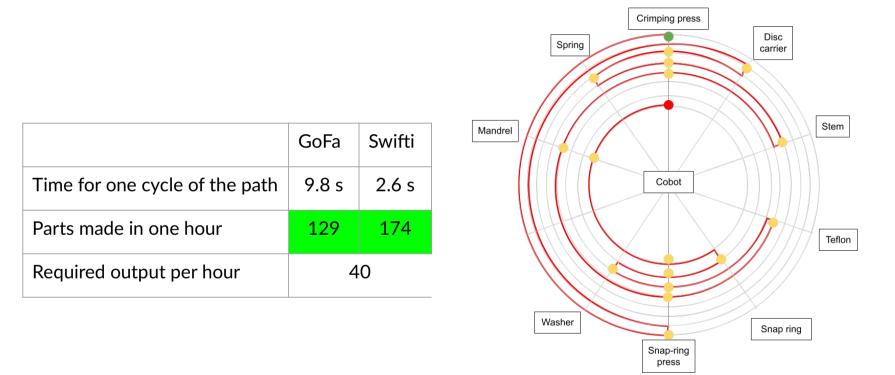
Actual design will require more robust components

[2]

[3]

Robotic Arm

Comparisons between the top three collaborative robot (cobot) options for this application



Parameters	GoFa	Swifti	UR5e
Payload [kg]	5	4	5
DOF	6	6	6
Reach [mm]	950	475 and 580	850
Max Speed [m/s]	2.2	5.05	1
Starting Cost	\$30,802.72	\$30,802.72	\$35,000

<u>Note:</u> Parker also has a contract with ABB robotics, so they already have a good relationship and other contacts established.

Layout of the robot tool-path

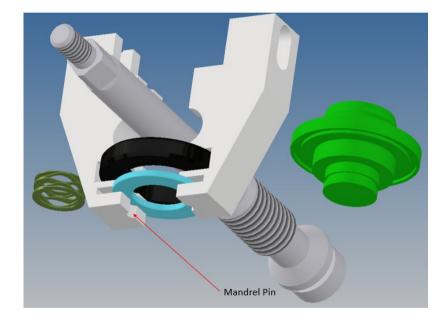
Collaborative Robot Safety Standards

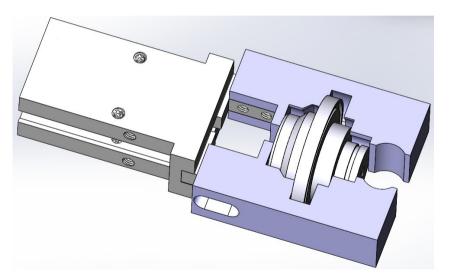
ISO 10218 (2011): Safety requirements for industrial robots

Part 1: Robots Part 2: Robot systems and integration

ISO/TS 15066 (2016): Safety requirements for industrial robots

Collaborative operation

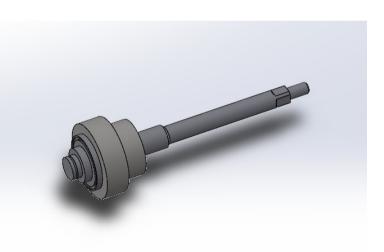


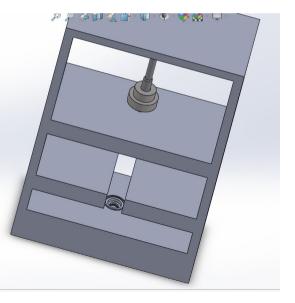


Pneumatic Grippers

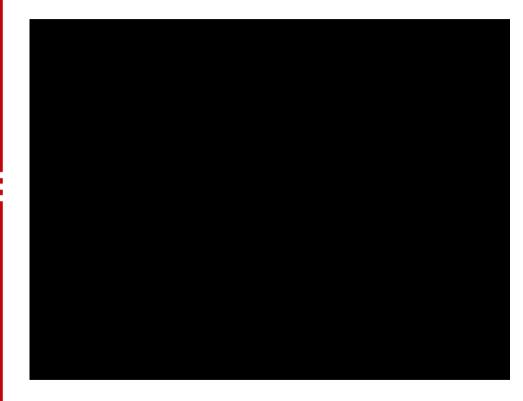
Finger designs were iterated with Parker Engineers

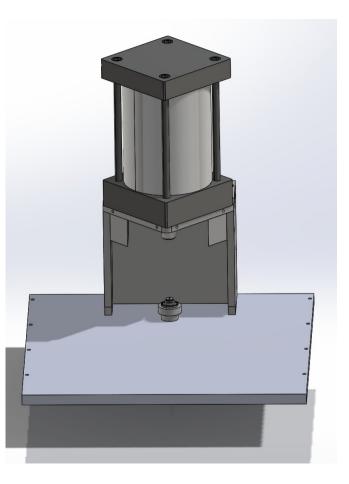
We have two working prototypes: One for OD and one for ID



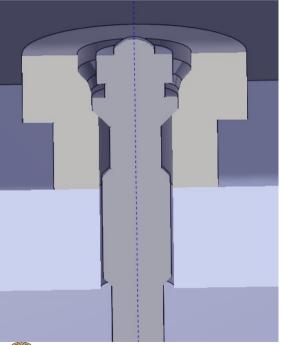

Crimping Press Design

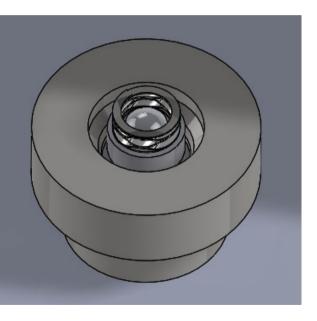
The crimping step won't utilize Parker's existing press design


- Mold for disc carrier to fit into
- Crimping coupling tool to transmit force between the stem and the disc carrier, allowing the wave spring to crimp



Improved Press Design





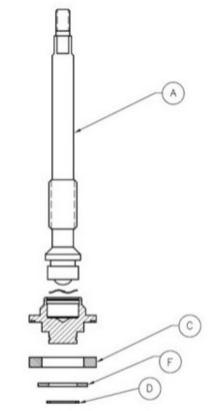
The molded stem holder prevents overpressing.

- Required inlet pressure needs to be larger than 90 psi to sufficiently crimp.
 - Cylinder Bore is 6 in

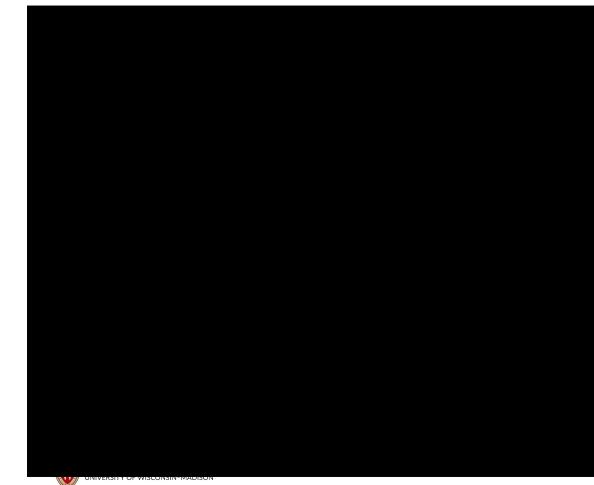
Snap-Ring and Mandrel Design

Current Snap Ring Process

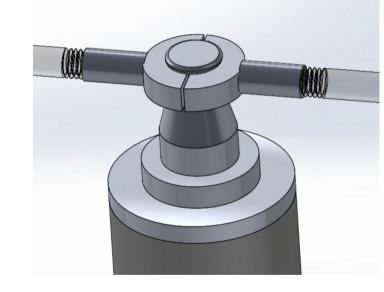
- Teflon (C), washer (F), snap ring (D), and crimped stem assembly (A)
- Snap ring is placed on a mandrel and placed on the same axis as the disc carrier stem assembly
- Clamp the snap ring on the assembly with the solid collet


College of Engineering

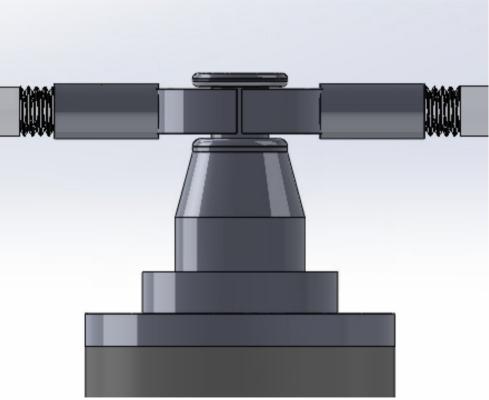
Current hand-powered snap ring clamping press



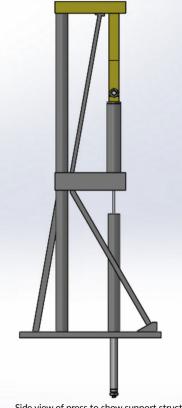
Zoomed in image of mandrel



New Design


- 6 steps
- Teflon, washer, and snap ring are added when mandrel is on and side actuators are retracted (step 2 in video)

New Design - Gripping the Mandrel


Top view of grippers with mandrel

Front view of grippers with mandrel

Support Structures

Side view of press to show support structures

Bending Load:

 $S_n = S_n'C_1C_2C_5C_7C_8$

Aluminum yield and ultimate stress [14]:

 $S_{n}' = 4.5 \ ksi$ $S_{\rm o} = 12 \ ksi$

From the Juvinall textbook [14]:

$$C_L = 1, \ C_G = 0.9, \ C_S = 0.8, \ C_T = 1, \ C_R = 1$$

From equation 1...

$$S_n = S_n' C_L C_G C_S C_T C_R = (4.5)(1)(0.9)(0.8)(1)(1) = 3.24 ksi$$

(2)

(3)

(4)

(5)

Bending Stress:

 $\sigma_{nom} = Mc/I$

Where the bending moment,

$$M = F * x = 9.47[lb] * 5[in] = 47.35[lb - in]$$

The moment of inertia about the neutral axis.

$$I = 0.5 * m * r^{2} = 0.5 * 1.11 * 0.5^{2} = 0.1388 [in^{4}]$$

The distance from the neutral axis,

c = 0.5 [in]

Resulting in a bending stress of 170.6 [psi]

(1) Axial Load:

$$\sigma_a = F/A = mg/A = (11.7lb)(32.174ft/s^2)/(3.1415 * (0.5^2)) = 479.29 \, psi \quad (6)$$
Goodman's:

$$(\boldsymbol{\sigma}_{a}/S_{n}) + (\boldsymbol{\sigma}_{m}/S_{u}) = 1/n$$

$$(479.29/(3.24 * 10^{3})) + (170.63/(12 * 10^{3})) = 1/n$$

$$n = 6.181 SF$$

$$(7)$$

This demonstrates that support structures are not required, however it would be beneficial as the support structures will improve stability and reduce the chances of failure.

Conclusion

We've shown a viable way to automate the assembly of handvalve stems.

For the future, Parker is pursuing another direction for their handvalve stems, but the concepts and research we worked on will hopefully be helpful for their future automation projects.

Thank you. Questions?

By: Ahmed Khalil, Megan Sindelar, Hannah Fibikar, and Erik Svetin

Bibliography

[1] "GoFa," ABB Collaborative Robotics. [Online]. Available: https://cobots.robotics.abb.com/en/robots/gofa/. [Accessed: 24-Apr-2021].

[2] Parker. [Online]. Available: https://www.parker.com/. [Accessed: 24-Apr-2021].

[3] Wired.com. [Online]. Available: https://www.wired.com/story/when-ai-cant-replace-worker-watches-them-instead/ [Accessed 28-Apr-2021]

[4] "Automatic Assembly Machine and Automation System Solutions," *TQC*, 24-Nov-2020. [Online]. Available: https://www.tqc.co.uk/our-services/automation/assembly-automation/. [Accessed: 24-Feb-2021].

[5] Manitowoc. [Online]. Available: https://www.mantool.com/5-axis-cnc-machining-centers/ [Accessed 28-Apr-2021]

[6] ABB. [Online]. Available: https://global.abb/group/en. [Accessed: 24-Apr-2021].

[7] "420 Stainless Steel Spring Pin," Amazon. [Online]. Available: https://www.amazon.com/Stainless-Steel-Spring-Plain-Finish/dp/B00DC5QJUK . [Accessed: 24-Apr-2021]

[8] "TM Robotics," TVL500 robot | six axis robots | industrial robots. [Online]. Available: https://www.tmrobotics.com/6-axis-robot-tvl500/. [Accessed: 28-Apr-2021].

[9] ABB SCARA robotic arm. Robotic Industries Automation.

[10] "SWIFTI," ABB Collaborative Robotics. [Online]. Available: https://cobots.robotics.abb.com/en/robots/swifti/. [Accessed: 24-Apr-2021].

[11] "UR5 collaborative robot arm: Flexible and lightweight cobot," UR5 collaborative robot arm | Flexible and lightweight cobot. [Online]. Available: https://www.universal-robots.com/products/ur5-robot/. [Accessed: 24-Apr-2021].

[12] "Wizard Easy Programming: ABB Robotics," *Robotics*. [Online]. Available: https://new.abb.com/products/robotics/application-software/wizard. [Accessed: 28-Apr-2021].

[13] "Robot Pic" Padget Technologies, Inc. [Online]. Available: https://padgettechnologies.com/robots-spatial-awareness/robot-pic/. [Accessed: 27-Apr-2021].

[14] "GoFa™ CRB 15000", ABB. [Online]. Available: <u>https://new.abb.com/products/robotics/collaborative-robots/crb-15000</u>. [Accessed: 27-Apr-2021].

[15] "MHC2, Air Gripper, Angular Style" SMC. [Online]. Available: https://www.smcusa.com/products/MHC2-Air-Gripper-Angular-Style~20241. [Accessed: 27-Apr-2021].

[16] "RG2 – Flexible 2 Finger Robot Gripper With Wide Stroke" OnRobot. [Online]. Available: https://onrobot.com/en/products/rg2-gripper. [Accessed: 27-Apr-2021].

