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Strategy   

Before   designing   our   truss,   we   conducted   a   finite   element   analysis   (FEA)   study   on   a   solid   body   

with   the   given   bridge   geometry   to   get   a   sense   of   where   stresses   are   distributed   throughout   the  

structure.   We   initially   found   that   there   is   a   significant   amount   of   stress   being   built   up   at   the   fixed   

locations   of   the   3D   modeled   bridge,   making   the   entire   bridge   have   the   same   gradient.   In   order   to   

generate   a   plot   which   accurately   translates   the   3D   model   into   the   desired   2D   model,   we   had   to   put   a   

limit   on   the   maximum   stresses   shown   by   SolidWorks.   Figure   1   below   shows   how   the   stress   gradient   plot   

for   this   bridge   geometry.   Since   the   stresses   have   been   capped,   this   is   a   relatively   accurate   model   for   how   

stresses   are   distributed   throughout   the   model,   with   red   showing   high   stress   and   blue   showing   low   

stress.     

  

  
Figure   1.   FEA   simulation   displaying   stress   distribution   across   bridge’s   geometry   

  

As   shown   by   the   red   and   green   contours   in   Figure   1,   the   areas   of   highest   stress   are   around   the   

triangle   edge’s,   the   top   and   bottom   of   the   bridge,   and   the   fixed   locations.   These   are   the   areas   that   were   

most   impacted   by   the   design,   and   the   truss   designs   detailed   in   this   report   largely   reflect   these   findings.   

Our   first   iteration   of   the   truss   design   prior   to   optimization   is   shown   in   Figure   2.     



  
Figure   2.   First   Iteration   of   Truss   Design   Prior   to   Optimization   

  

Figure   2   shows   our   first   design   of   the   truss   before   optimization   and   how   we   incorporated   our   

findings   from   the   FEA   simulations   to   it.   The   first   design   targeted   the   top   section   of   the   bridge   as   that   is   

where   there   is   a   large   build   of   stresses,    but   did   not   take   into   account   the   length   constraint   as   we   only   

wanted   to   get   an   idea   of   how   to   start   without   over-complicating   the   design.   Once   we   ran   the   

optimization   code   with   this   design,   we   kept   iterating   the   design   to   further   minimize   compliance   and   to   

meet   the   length   constraint.   A   summary   of   our   results   is   shown   in   the   Results   and   Conclusion   section   of   

this   report.     

To   accelerate   the   design   process,   a   Delauney   triangulation   built-in   MATLAB   class   was   used   to   

create   an   approximate   mesh   given   node   locations.   A   function   called   ‘extractConnectivity’   was   written   to   

translate   between   triangular   and   simple   two-point   connectivities.   While   this   function   is   not   called   

specifically   in   the   final   ‘trussProject’   code,   it   was   a   valuable   tool   throughout   the   design   process,   and   is   

thus   included   in   the   Appendix   for   reference.   Additionally,   Excel   spreadsheets   were   used   to   quickly   

modify   node   locations   and   receive   instant   visual   feedback   when   doing   so.     

  

Formulation   

The   present   optimization   study   attempts   to   minimize   the   compliance   of   the   truss   systems   shown   

in   the   Results   and   Conclusions   section.   Equation   1   poses   this   problem   with   the   appropriate   constraints.   
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As   shown   in   Equation   1,   each   bar   is   constrained   by   the   100   MPa   yield   stress   in   tension   and   

compression,   while   the   entire   system   is   constrained   to   a   total   volume   that   cannot   be   exceeded   ( V max ).   

The   entire   truss   must   not   exceed   3060   kg,   though   we   found   it   more   straightforward   to   constrain   the   

volume   to   that   which   would   yield   the   maximum   mass,   then   simply   apply   the   material   density   following   

the   optimization.   Minimizing   the   mass   directly   would   yield   equivalent   results.    The   objective   is   the   

compliance   of   the   entire   system   and   is   the   product   of   the   force,    f ,   and   the   displacement   at   all   nodes,    u ,   

on   the   truss.   The   first   constraint   is   to   ensure   that   the   total   volume   of   the   truss   bars   do   not   exceed   the   

maximum   volume.   That   constraint   is   a   function   of   the   cross-sectional   area,    A i ,   and   length,    l i ,   of   each   bar.   

The   second   and   third   constraints   ensure   that   the   bars   do   not   exceed   yield   strength   in   tension   and   

compression,   respectively.   The   stress   at   each   bar   is   denoted   by       and   the   yield   stress   is   denoted   by    .     

  

Equation   1   is   then   scaled   appropriately   to   ensure   that   the   optimization   does   not   terminate   

prematurely.   Given   that   the   areas   are   relatively   small,   almost   the   same   size   as   the   termination   size   for   

fmincon,   we   divided   all   areas   by   the   initial   area   to   get   a   reasonably   accurate   result.   The   same   

methodology   was   applied   to   the   objective   and   other   constraints,   as   shown   in   Equation   2.     

  

Here,    J 0     is   simply   the   initial   compliance   prior   to   optimizing.   Equation   3   shows   the   

non-dimensional   variable    x i    that   scales   the   cross-sectional   area   of   each   member   ( A i )   relative   to   its   initial   

area   ( A i 
0 ).   

The   dimensionless    x    variables   are   the   design   variables   for   this   optimization,   as   the   beam   areas   

are   the   only   variables   modified   to   minimize   the   compliance.     

  

In   addition   to   the   constraints   listed   above,   the   problem   was   also   constrained   by   the   length,    l,    of   

each   bar   such   that   they   shall   not   exceed   10   m.   Given   that   the   coordinates   of   each   node   were   

predetermined,   there   was   no   method   for   the   optimization   code   to   vary   the   coordinates   of   each   node   

such   that   they   meet   the   necessary   length   constraint.   However,   the   code   was   modified   so   it   would   display   
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an   error   if   any   of   the   bar   lengths   was   greater   than   the   desired   value,   notifying   the   designer   to   pick   closer   

nodes   during   the   next   run.     

    

Results   and   Conclusions     

The   optimization   code   written   for   this   truss   design   is   called   

‘truss2dMinComplianceAllConstraints’   and   utilizes   all   of   the   equations   listed   later   in   the   formulation   

section   of   the   report   (see   Appendix).   In   addition   to   these   equations,   the   code   written   also   plots   each   bar   

in   the   truss   with   line   weights   relative   to   the   member   with   the   largest   area.   This   functionality   helped   us   

identify   bars   with   relatively   high   areas   and   make   the   appropriate   adjustments.   All   optimizations   were   

carried   out   to   at   least   50,000   function   calls.     

  

Figure   3   shows   the   first   iteration   of   the   truss   design,   shown   in   Figure   2,   after   it   has   been   

optimized.     

  

  
Figure   3.   First   Iteration   of   Truss   Design   After   Optimization   

  

This   result   verifies   that   the   optimization   code   is   working   correctly   as   it   meets   all   of   the   

constraints   defined   by   the   optimization   class.   The   final   mass   is   maximized   to   the   allowed   value,   the   

compliance   is   reduced   by   a   factor   of   10,   and   none   of   the   bars   exceed   the   yield   strength.   The   only   

constraint   not   met   by   this   design   is   that   many   members   exceed   10   m   in   length.   Much   greater   node   

density   in   later   designs   satisfies   this   constraint.   Figures   4   and   5   show   the   second   iteration   of   the   truss   

design   before   and   after   optimization,   respectively.    



  
Figure   4.   Second    Iteration   of   Truss   Design   Prior   to   Optimization   

  

  
Figure   5.   Second    Iteration   of   Truss   Design   After   Optimization   

  

The   second   design   iteration   more   closely   follows   the   stress   heatmap   shown   in   Figure   1,   where   

there   is   a   higher   node   density   particularly   around   the   triangle   cutouts.   Interestingly,   the   second   iteration   

actually   performed   slightly   worse   than   the   first.   However,   given   that   the   first   iteration   did   not   fully   meet   

the   design   constraints,   the   second   iteration   is   still   an   improvement   given   that   all   constraints   are   met   

without   a   significant   decrease   in   performance.   

  

For   our   final   iteration,   we   targeted   the   first   layer   from   the   bottom,   the   area   surrounding   the   

triangles,   and   the   edges   of   the   bridge.   The   y-values   of   the   first   layer   were   reduced   so   the   angle   between   

the   horizontal   and   the   bars   is   smaller,   allowing   these   members   to   carry   more   horizontal   force   and   reduce   

the   force   carried   by   the   final   bottom   layer.   Similarly,   for   the   area   surrounding   the   triangles   and   the   edges   

of   the   bridge,   creating   a   smaller   mesh   of   bars   allows   for   greater   optimization   flexibility   at   these   critical   

locations.   The   edges   were   also   modified   such   that   more   bars   are   angled   and   can   therefore   distribute   the   

vertical   force   that   the   edges   experience.   Figures   6   and   7   show   the   third   and   final   iteration   of   the   truss   

design   before   and   after   optimization,   respectively.    



  
Figure   6.   Final   Iteration   of   Truss   Design   Prior   to   Optimization   

  

  
Figure   7.   Final   Iteration   of   Truss   Design   After   Optimization   

  

Figure   7   verifies   our   reasoning   and   reflects   the   conclusions   from   the   FEA   results.   The   code   

generated   results   where   the   final   mass   is   maximized,   the   final   compliance   is   reduced   to   just   1,933   N-m,   

and   the   maximum   deformation   is   0.033   m.   However,   after   comparing   our   first   iteration   and   final   

iteration   results,   it   was   concluded   that   the   number   of   nodes   and   bars   does   not   significantly   decrease   the   

final   compliance.     

  

We   do   not   believe   that   there   is   an   attainable   optimal   solution   that   could   be   found   manually   

simply   due   to   the   quantity   of   variables   at   play   and   the   time   required   for   each   iteration.   Another   

potential   method   of   solving   this   problem   would   be   to   build   a   neural   network   that   would   essentially   be   

iterating   as   we   are   doing,   however   the   neural   network   could   compute   and   find   trends   much   faster   than   

we   could   by   hand.   This   method   is   significantly   more   efficient   in   terms   of   time   and   would   also   generate   a   

more   optimal   solution.   However,   given   the   time   constraint   of   this   project,   we   were   not   able   to   build   a   

neural   network   or   any   other   machine   learning   model   in   the   allocated   time.     

  

  



NOTE: This code takes a long time to run (5+ minutes)

Consider lowering the maximum function calls in truss2dMinComplianceAllConstraints for testing

Contents

NOTE: extractConnectivity attached at the end, for reference

NOTE: extractConnectivity attached at the end, for reference

load("xy2_new.mat"); 
load("C2_new.mat"); 

clc; 
trussClass = 'truss2dMinComplianceAllConstraints'; 
t = feval(trussClass,xy2_new,C2_new);% initialize model 
t = t.fixXofNodes([1]); 
t = t.fixYofNodes([1 2]); 
forceNodes = [140,14,15,16,17,18,19,20,21,22,141]; 
totalForce = -1e5; 
t = t.applyForce(forceNodes,[0; totalForce/numel(forceNodes)]); 
t = t.assignE(2e11); % for all members 
t = t.assignA(8.5e-05); % for all members 
t = t.assignDensity(7700); % for all members 
maxMass = 3060; % maximum mass in kg 
t = t.assignMaxVolume(maxMass/t.myDensity); % maximum volume 
 
t = t.assemble(); 
t = t.solve(); 
t = t.computeStresses(); 
t = t.optimize(); 
 
t.plot(0); 
projectDesignSpace; 
figure; 
t.plotDeformed(); 
if (max(t.myL) > 10) 
    disp('WARNING: MEMBERS DO NOT MEET LENGTH CONSTRAINT'); 
end 
disp('Initial Volume: '); disp(t.myInitialVolume) 
disp('Final Volume: '); disp(t.myFinalVolume); 
disp('Initial Mass: '); disp(t.myInitialMass) 
disp('Final Mass: '); disp(t.myFinalMass); 
disp('Initial Compliance: '); disp(t.myInitialCompliance) 
disp('Final Compliance: '); disp(t.myFinalCompliance); 

Solver stopped prematurely. 
 
fmincon stopped because it exceeded the function evaluation limit, 
options.MaxFunctionEvaluations = 1.000000e+03. 
 
Initial Volume:  
    0.2284 
 
Final Volume:  
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classdef truss2dMinComplianceAllConstraints < truss2d 

    % stress-constrained volume minimization 

    properties(GetAccess = 'public', SetAccess = 'private') 

        myInitialVolume; 

        myInitialArea; 

        myInitialCompliance; 

        myFinalArea; 

        myFinalCompliance; 

        myFinalVolume; 

        myYieldStress; 

        myLambda; 

        myDensity; 

        myInitialMass; 

        myFinalMass; 

        myMaxVolume; 

    end 

    methods 

        function obj = truss2dMinComplianceAllConstraints(xy,connectivity) 

            obj = obj@truss2d(xy,connectivity); 

            obj.myYieldStress(1:obj.myNumTrussBars) = 100e6; % default 

        end 

        function obj = assignYieldStress(obj,yieldStress,members) 

            % assign sMax to one or more members 

            % if members is not given, then assign to all 

            if (nargin == 2) 

                members = 1:obj.myNumTrussBars; 

            else 

                assert(max(members) <= obj.myNumTrussBars); 

                assert(min(members) >=  1); 

            end 

            obj.myYieldStress(members) = yieldStress; 

        end 

        function obj = assignMaxVolume(obj,maxVolume) 

            obj.myMaxVolume = maxVolume; 

        end 

        function obj = assignDensity(obj,density) 

            obj.myDensity = density; 

        end 

        function JRelative = complianceObjective(obj,x) 

            Area = x.*obj.myInitialArea; 

            obj = obj.assignA(Area); 

            obj = obj.assemble(); 

            obj = obj.solve(); 

            J = obj.getCompliance(); 

            JRelative = J/obj.myInitialCompliance; 

        end 

        function [cineq,ceq] = allConstraints(obj,x) 

            Area = x.*obj.myInitialArea; 

            obj = obj.assignA(Area); 

            obj = obj.assemble(); 

            obj = obj.solve(); 

            nConstraints = 2*obj.myNumTrussBars + 1; % two stress constraints per bar and volume constraint 

            cineq = zeros(1,nConstraints); 

            constraint = 1; 

            for m = 1:obj.myNumTrussBars 

                cineq(constraint) = obj.myStress(m)/obj.myYieldStress(m)-1;% tension 

                cineq(constraint+1) = -obj.myStress(m)/obj.myYieldStress(m) -1;%compression 

                constraint = constraint+2; % increment 

            end 

            cineq(constraint) = sum(obj.myArea.*obj.myL)/obj.myMaxVolume - 1; % cannot exceed max volume 

            ceq = []; 

        end 

        function obj = initialize(obj) 

            obj.myInitialArea = obj.myArea; 

            obj.myInitialVolume = sum(obj.myArea.*obj.myL); 

            obj.myInitialMass = obj.myInitialVolume*obj.myDensity; 

            obj = obj.assemble(); 

            obj = obj.solve(); 

            obj.myInitialCompliance =  obj.getCompliance(); 

        end 

        function processLambda(obj) 

            ineqnonlin = obj.myLambda.ineqnonlin; 
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            maxValue = max(abs(ineqnonlin)); 

            ineqnonlin = ineqnonlin/maxValue; % scaled 

            for m = 1:obj.myNumTrussBars 

                if (ineqnonlin(2*m-1) > 0.0001) 

                    disp(['Bar ' num2str(m) ': Tensile stress active']); 

                elseif (ineqnonlin(2*m) > 0.0001) 

                    disp(['Bar ' num2str(m) ': Compressive stress active']); 

                else 

                    disp(['Bar ' num2str(m) ': Stress inactive']); 

                end 

            end 

        end 

        function obj = optimize(obj) 

            obj = obj.initialize(); 

            opt = optimset('fmincon'); 

            opt.MaxFunEvals = 50000; %NOTE: 50000 function calls will take 5+ minutes to run; consider lowering for test

            x0 = ones(1,obj.myNumTrussBars); % unitless quantities 

            LB = 1e-12*ones(1,obj.myNumTrussBars); % small non-zero values 

            [xMin,~,~,~,Lambda]  = fmincon(@obj.complianceObjective,x0, ... 

                   [],[],[],[],LB,[],@obj.allConstraints,opt); 

            obj = obj.assignA(xMin.*obj.myInitialArea); 

            obj = obj.assemble(); 

            obj = obj.solve(); 

            obj.myFinalArea= obj.myArea; 

            obj.myFinalVolume = sum(obj.myArea.*obj.myL); 

            obj.myFinalCompliance =  obj.getCompliance(); 

            obj.myLambda = Lambda; 

            obj.myFinalMass = obj.myDensity * obj.myFinalVolume; 

        end 

    end 

end 

Not enough input arguments. 

 

Error in truss2dMinComplianceAllConstraints (line 19) 

            obj = obj@truss2d(xy,connectivity); 
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function C = extractConnectivity(xy) 
    DT = delaunayTriangulation(xy); % initialize triangulation 
    connectivityTriangles = DT.ConnectivityList; % connectivity of each triangle 
    [rows,cols] = size(connectivityTriangles); 
    connectivity = []; 
    for (i = 1:rows) 
        connectivity = [connectivity; 
                         connectivityTriangles(i,1) connectivityTriangles(i,2); 
                         connectivityTriangles(i,3) connectivityTriangles(i,2)]; 
    end 
    C = connectivity; 
end 

Not enough input arguments. 
 
Error in extractConnectivity (line 2) 
    DT = delaunayTriangulation(xy); % initialize triangulation 
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