ME 548 Project Report

Mitchell Haglund, Ahmed Khalil
04/26/2021

Strategy

Before designing our truss, we conducted a finite element analysis (FEA) study on a solid body
with the given bridge geometry to get a sense of where stresses are distributed throughout the
structure. We initially found that there is a significant amount of stress being built up at the fixed
locations of the 3D modeled bridge, making the entire bridge have the same gradient. In order to
generate a plot which accurately translates the 3D model into the desired 2D model, we had to put a
limit on the maximum stresses shown by SolidWorks. Figure 1 below shows how the stress gradient plot
for this bridge geometry. Since the stresses have been capped, this is a relatively accurate model for how
stresses are distributed throughout the model, with red showing high stress and blue showing low
stress.

Figure 1. FEA simulation displaying stress distribution across bridge’s geometry

As shown by the red and green contours in Figure 1, the areas of highest stress are around the
triangle edge’s, the top and bottom of the bridge, and the fixed locations. These are the areas that were
most impacted by the design, and the truss designs detailed in this report largely reflect these findings.
Our first iteration of the truss design prior to optimization is shown in Figure 2.

T T T T T T T T T
50 4
40

304

: /\

I I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100

Figure 2. First Iteration of Truss Design Prior to Optimization

Figure 2 shows our first design of the truss before optimization and how we incorporated our
findings from the FEA simulations to it. The first design targeted the top section of the bridge as that is
where there is a large build of stresses, but did not take into account the length constraint as we only
wanted to get an idea of how to start without over-complicating the design. Once we ran the
optimization code with this design, we kept iterating the design to further minimize compliance and to
meet the length constraint. A summary of our results is shown in the Results and Conclusion section of
this report.

To accelerate the design process, a Delauney triangulation built-in MATLAB class was used to
create an approximate mesh given node locations. A function called ‘extractConnectivity’ was written to
translate between triangular and simple two-point connectivities. While this function is not called
specifically in the final ‘trussProject’ code, it was a valuable tool throughout the design process, and is
thus included in the Appendix for reference. Additionally, Excel spreadsheets were used to quickly
modify node locations and receive instant visual feedback when doing so.

Formulation
The present optimization study attempts to minimize the compliance of the truss systems shown
in the Results and Conclusions section. Equation 1 poses this problem with the appropriate constraints.

Z Aili = Vipae <0

o;—0y <0 (1)
—0;—0, <0

subject to

Ku=f

https://www.codecogs.com/eqnedit.php?latex=%5Cunderset%7B%5C%7BA_1,A_2,...%5C%7D%7D%7BMin%7Df%5ETu%230
https://www.codecogs.com/eqnedit.php?latex=%5Csum%20A_il_i-V_%7Bmax%7D%5Cleq%200%230
https://www.codecogs.com/eqnedit.php?latex=%5Csigma_i-%5Csigma_y%5Cleq%200%230
https://www.codecogs.com/eqnedit.php?latex=-%5Csigma_i-%5Csigma_y%5Cleq%200%230
https://www.codecogs.com/eqnedit.php?latex=Ku=f%230

As shown in Equation 1, each bar is constrained by the 100 MPa yield stress in tension and
compression, while the entire system is constrained to a total volume that cannot be exceeded (V).
The entire truss must not exceed 3060 kg, though we found it more straightforward to constrain the
volume to that which would yield the maximum mass, then simply apply the material density following
the optimization. Minimizing the mass directly would yield equivalent results. The objective is the
compliance of the entire system and is the product of the force, f, and the displacement at all nodes, u,
on the truss. The first constraint is to ensure that the total volume of the truss bars do not exceed the
maximum volume. That constraint is a function of the cross-sectional area, A, and length, /, of each bar.
The second and third constraints ensure that the bars do not exceed yield strength in tension and

compression, respectively. The stress at each bar is denoted by i and the yield stress is denoted by %v.

Equation 1 is then scaled appropriately to ensure that the optimization does not terminate
prematurely. Given that the areas are relatively small, almost the same size as the termination size for
fmincon, we divided all areas by the initial area to get a reasonably accurate result. The same
methodology was applied to the objective and other constraints, as shown in Equation 2.

= —-1<0
Vmam o

i _ 4 <0 (2)
Oy
“Zii<o
Oy
subject to

Ku=f

Here, /%is simply the initial compliance prior to optimizing. Equation 3 shows the
non-dimensional variable x; that scales the cross-sectional area of each member (A)) relative to its initial
area (A)).

A;
=0 (3)

X

The dimensionless x variables are the design variables for this optimization, as the beam areas
are the only variables modified to minimize the compliance.

In addition to the constraints listed above, the problem was also constrained by the length, /, of
each bar such that they shall not exceed 10 m. Given that the coordinates of each node were
predetermined, there was no method for the optimization code to vary the coordinates of each node
such that they meet the necessary length constraint. However, the code was modified so it would display

https://www.codecogs.com/eqnedit.php?latex=%5Csigma_i%230
https://www.codecogs.com/eqnedit.php?latex=%5Csigma_y%230
https://www.codecogs.com/eqnedit.php?latex=%5Cunderset%7B%5C%7BA_1,A_2,...%5C%7D%7D%7BMin%7D%5Cfrac%7Bf%5ETu%7D%7BJ%5E0%7D%230
https://www.codecogs.com/eqnedit.php?latex=%5Cfrac%7B%5Csum%20x_iA_il_i%7D%7BV_%7Bmax%7D%7D-1%5Cleq%200%230
https://www.codecogs.com/eqnedit.php?latex=x_i%3E0%230
https://www.codecogs.com/eqnedit.php?latex=%5Cfrac%7B%5Csigma_i%7D%7B%5Csigma_y%7D-1%5Cleq%200%230
https://www.codecogs.com/eqnedit.php?latex=-%5Cfrac%7B%5Csigma_i%7D%7B%5Csigma_y%7D-1%5Cleq%200%230
https://www.codecogs.com/eqnedit.php?latex=%5Ctext%7Bsubject%20to%7D%230
https://www.codecogs.com/eqnedit.php?latex=Ku=f%230
https://www.codecogs.com/eqnedit.php?latex=x_i=%5Cfrac%7BA_i%7D%7BA_i%5E0%7D%230

an error if any of the bar lengths was greater than the desired value, notifying the designer to pick closer
nodes during the next run.

Results and Conclusions

The optimization code written for this truss design is called
‘truss2dMinComplianceAllConstraints’ and utilizes all of the equations listed later in the formulation
section of the report (see Appendix). In addition to these equations, the code written also plots each bar
in the truss with line weights relative to the member with the largest area. This functionality helped us
identify bars with relatively high areas and make the appropriate adjustments. All optimizations were
carried out to at least 50,000 function calls.

Figure 3 shows the first iteration of the truss design, shown in Figure 2, after it has been
optimized.

Max deformation = 0.035432; volume = 0.39738 Initial Volume:
o0 0.1174

Final Volume:
0.3974

Initial Mass:
904.1319

Final Mass:
3.0598e+03

Initial Compliance:
2.0800e+04

Final Compliance:
© © % ® 7 w % 100 0 10 20 % 4 s e 1 8 s 10 2.3762e+03

Figure 3. First Iteration of Truss Design After Optimization

This result verifies that the optimization code is working correctly as it meets all of the
constraints defined by the optimization class. The final mass is maximized to the allowed value, the
compliance is reduced by a factor of 10, and none of the bars exceed the yield strength. The only
constraint not met by this design is that many members exceed 10 m in length. Much greater node
density in later designs satisfies this constraint. Figures 4 and 5 show the second iteration of the truss
design before and after optimization, respectively.

Max ion = 0.22473; volume = 0.16206
T T T T

50 -

40

20
[

20— 8 -20

Figure 4. Second lIteration of Truss Design Prior to Optimization

. - Max deformation = 0.036895; volume = 0.39739 Initial Volume:
” - ‘] 0.3974
“or 1 wl | Final Volume:
0.3974

Initial Mass:
3.0600e+03

Final Mass:
3.0599e+03

Initial Compliance:

0- 1 0 1 6.3124e+03
s g 20| 4+ Final Compliance:
2.4471e+03

L L L L L L L L L L L L L L
0 10 20 30 40 50 60 70 80 % 100 0 10 20 30 40 50 60 70 80 90 100

Figure 5. Second Iteration of Truss Design After Optimization

The second design iteration more closely follows the stress heatmap shown in Figure 1, where
there is a higher node density particularly around the triangle cutouts. Interestingly, the second iteration
actually performed slightly worse than the first. However, given that the first iteration did not fully meet
the design constraints, the second iteration is still an improvement given that all constraints are met
without a significant decrease in performance.

For our final iteration, we targeted the first layer from the bottom, the area surrounding the
triangles, and the edges of the bridge. The y-values of the first layer were reduced so the angle between
the horizontal and the bars is smaller, allowing these members to carry more horizontal force and reduce
the force carried by the final bottom layer. Similarly, for the area surrounding the triangles and the edges
of the bridge, creating a smaller mesh of bars allows for greater optimization flexibility at these critical
locations. The edges were also modified such that more bars are angled and can therefore distribute the
vertical force that the edges experience. Figures 6 and 7 show the third and final iteration of the truss
design before and after optimization, respectively.

Max deformation = 0.083305; volume = 0.3974

50 -

NSRRI | N
XV EISNAISEHR
\/\/ VZ,!.S’Q’ vzs;lﬁpuy qu‘i!'

VA

\/ \VAY. vAY \/\SK7\/

/|
P VAV AN AN A VAV VAN AN A VAVA PAVaN ravavAY sl)

NZANZ N NN NZNZN/ZL >

4

=
[Prravavavavavavawa |

L L L L L L L I L L L I L I I L L L
0 10 20 30 40 50 60 70 80 20 100 0 10 20 30 40 50 60 70 80 90 100

Figure 6. Final Iteration of Truss Design Prior to Optimization

: . : i ‘ ‘ ‘ ‘ Max ion = 0.033061; volume = 0.39736 Initial Volume:
50+ 1 eof] 0.3974

@ “ Final Volume:
0.3974

Initial Mass:
3.0600e+03

Final Mass:
3.0597e+03

Initial Compliance:
-0 10 1 5.1664e+03

-20 20 Final Compliance:
, , 1.9333e+03

0 10 20 30 40 50 60 70 80 % 100 0 10 20 Y “ 50 60 i 8 %0 100

Figure 7. Final Iteration of Truss Design After Optimization

Figure 7 verifies our reasoning and reflects the conclusions from the FEA results. The code
generated results where the final mass is maximized, the final compliance is reduced to just 1,933 N-m,
and the maximum deformation is 0.033 m. However, after comparing our first iteration and final
iteration results, it was concluded that the number of nodes and bars does not significantly decrease the
final compliance.

We do not believe that there is an attainable optimal solution that could be found manually
simply due to the quantity of variables at play and the time required for each iteration. Another
potential method of solving this problem would be to build a neural network that would essentially be
iterating as we are doing, however the neural network could compute and find trends much faster than
we could by hand. This method is significantly more efficient in terms of time and would also generate a
more optimal solution. However, given the time constraint of this project, we were not able to build a
neural network or any other machine learning model in the allocated time.

Appendix A: testProject.m

NOTE: This code takes a long time to run (5+ minutes)
Consider lowering the maximum function calls in truss2dMinComplianceAllConstraints for testing

Contents

= NOTE: extractConnectivity attached at the end, for reference

NOTE: extractConnectivity attached at the end, for reference

load("xy2 new.mat");
load("C2 new.mat");

clc;

trussClass = 'truss2dMinComplianceAllConstraints';

t = feval(trussClass,xy2 new,C2 new);% initialize model
t = t.fixXofNodes([1]);

t = t.fixYofNodes([1l 21]);

forceNodes = [140,14,15,16,17,18,19,20,21,22,141];
totalForce = -1e5;

t = t.applyForce(forceNodes,[0; totalForce/numel(forceNodes)]);
t t.assignE(2ell); % for all members

t = t.assignA(8.5e-05); % for all members

t t.assignDensity(7700); % for all members

maxMass = 3060; % maximum mass in kg

)

t = t.assignMaxVolume(maxMass/t.myDensity); % maximum volume

t = t.assemble();

t = t.solve();

t = t.computeStresses();
t = t.optimize();
t.plot(0);
projectDesignSpace;
figure;

t.plotDeformed();
if (max(t.myL) > 10)
disp('WARNING: MEMBERS DO NOT MEET LENGTH CONSTRAINT');

end

disp('Initial Volume: '); disp(t.myInitialVolume)
disp('Final Volume: '); disp(t.myFinalVolume);
disp('Initial Mass: '); disp(t.myInitialMass)

disp('Final Mass: '); disp(t.myFinalMass);

disp('Initial Compliance: '); disp(t.myInitialCompliance)

disp('Final Compliance: '); disp(t.myFinalCompliance);

Mitchell Haglund

Mitchell Haglund
Appendix A: testProject.m

Appendix B: truss2dMinComplianceAllConstraints.m

classdef truss2dMinComplianceAllConstraints < truss2d
% stress-constrained volume minimization
properties(GetAccess = 'public', SetAccess = 'private')
myInitialvVolume;
myInitialArea;
myInitialCompliance;
myFinalArea;
myFinalCompliance;
myFinalVolume;
myYieldStress;
myLambda;
myDensity;
myInitialMass;
myFinalMass;
myMaxVolume;
end
methods
function obj = truss2dMinComplianceAllConstraints(xy,connectivity)
obj = obj@truss2d(xy,connectivity);
obj.myYieldStress(l:obj.myNumTrussBars) = 100e6; % default
end
function obj = assignYieldStress(obj,yieldStress,members)
% assign sMax to one or more members
% if members is not given, then assign to all
if (nargin == 2)
members = 1l:obj.myNumTrussBars;
else
assert (max(members) <= obj.myNumTrussBars);
assert(min(members) >= 1);
end
obj.myYieldStress(members) = yieldStress;
end
function obj = assignMaxVolume (obj,maxVolume)
obj.myMaxVolume = maxVolume;
end
function obj = assignDensity(obj,density)
obj.myDensity = density;
end
function JRelative = complianceObjective(obj,x)
Area = xX.*obj.myInitialArea;
obj = obj.assignA(Area);
obj = obj.assemble();
obj = obj.solve();
J = obj.getCompliance();
JRelative = J/obj.myInitialCompliance;
end
function [cineq,ceq] = allConstraints(obj,x)
Area = xX.*obj.myInitialArea;
obj = obj.assignA(Area);
obj = obj.assemble();
obj = obj.solve();

nConstraints = 2*obj.myNumTrussBars + 1; % two stress constraints per bar and volume constraint
cineq = zeros(1l,nConstraints);
constraint = 1;

for m = l:obj.myNumTrussBars
cineq(constraint) = obj.myStress(m)/obj.myYieldStress(m)-1;% tension
cineq(constraint+l) = -obj.myStress(m)/obj.myYieldStress(m) -1;%compression
constraint = constraint+2; % increment
end
cineqg(constraint) = sum(obj.myArea.*obj.myL)/obj.myMaxVolume - 1; % cannot exceed max volume
ceq = [1;
end
function obj = initialize(obj)
obj.myInitialArea = obj.myArea;
obj.myInitialVolume = sum(obj.myArea.*obj.myL);
obj.myInitialMass = obj.myInitialVolume*obj.myDensity;
obj = obj.assemble();
obj = obj.solve();
obj.myInitialCompliance = obj.getCompliance();
end
function processLambda(obj)
inegnonlin = obj.myLambda.inegnonlin;

Mitchell Haglund
Appendix B: truss2dMinComplianceAllConstraints.m

maxValue = max(abs(inegnonlin));
inegnonlin = inegnonlin/maxValue; % scaled
for m = l:obj.myNumTrussBars

if (inegnonlin(2*m-1) > 0.0001)

disp(['Bar ' num2str(m) ': Tensile stress active']);
elseif (inegnonlin(2*m) > 0.0001)
disp(['Bar ' num2str(m) ': Compressive stress active']);
else
disp(['Bar ' num2str(m) ': Stress inactive']);
end
end

end
function obj = optimize(obj)
obj = obj.initialize();
opt = optimset('fmincon');
opt.MaxFunEvals = 50000; %NOTE: 50000 function calls will take 5+ minutes to run; consider lowering for test

x0 = ones(1l,obj.myNumTrussBars); % unitless quantities
LB = le-12*ones(1l,0bj.myNumTrussBars); % small non-zero values
[®¥Min,~,~,~,Lambda] = fmincon(@obj.complianceObjective,x0, ...

[1,01,01,[1,LB,[],@obj.allConstraints,opt);
obj = obj.assignA(xMin.*obj.myInitialArea);
obj = obj.assemble();
obj = obj.solve();
obj.myFinalArea= obj.myArea;
obj.myFinalVolume = sum(obj.myArea.*obj.myL);
obj.myFinalCompliance = obj.getCompliance();
obj.myLambda = Lambda;
obj.myFinalMass = obj.myDensity * obj.myFinalVolume;
end
end
end

Published with MATLAB® R2020b

Mitchell Haglund

Appendix C: extractConnectivity.m

function C = extractConnectivity(xy)
DT = delaunayTriangulation(xy); % initialize triangulation
connectivityTriangles = DT.ConnectivityList; % connectivity of each triangle

[rows,cols] = size(connectivityTriangles);
connectivity = [];
for (i = l:rows)

connectivity = [connectivity;
connectivityTriangles(i,1l) connectivityTriangles(i,2);
connectivityTriangles(i,3) connectivityTriangles(i,2)];
end
C = connectivity;
end

Published with MATLAB® R2020b

Mitchell Haglund

Mitchell Haglund
Appendix C: extractConnectivity.m

