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Abstract— This work is concerned with the finite-horizon
optimal covariance steering of networked systems gov-
erned by discrete-time stochastic linear dynamics. In con-
trast to existing work that has only considered systems
with dynamically decoupled ‘agents,’ we consider a dynam-
ically coupled system composed of interconnected sub-
systems. In particular, we propose a distributed algorithm
to compute the localized covariance steering policy for
each individual subsystem. To this end, we first formulate
the localized covariance steering problem and, leveraging
the system-level synthesis (SLS) framework, recast this
problem as a convex optimization problem over system
responses. We then examine the problem’s separability and
introduce a problem transformation to address instances
with nonseparable objective functions. Finally, we develop
a distributed algorithm based on the consensus alternating
direction method of multipliers (ADMM) to distribute com-
putation across subsystems based on their local informa-
tion and communication constraints. We demonstrate the
effectiveness of our proposed algorithm on a power system
with 36 interconnected subsystems.

Index Terms— Distributed control, networked control
systems, stochastic optimal control.

I. INTRODUCTION

THE widespread emergence of large-scale, highly intercon-
nected systems highlights the critical need for scalable

controllers that rely only on local information. In complex,
safety-critical systems such as power grids, these controllers
must ensure the network’s reliable operation and optimal per-
formance despite inherent uncertainties and noise. A promising
control paradigm addressing these challenges is Covariance
Steering (CS), which focuses on guiding the evolution of
the system’s state distribution while enforcing distributional
constraints at the terminal state. By explicitly accounting for
stochastic disturbances, CS ensures that the controller achieves
its desired mean and covariance targets. CS differs from
standard stochastic optimal control methods, such as linear-
quadratic-Gaussian (LQG) control [1], where uncertainty is
only controlled implicitly through shaping the cost function.

Infinite-horizon variants of CS problems were first formu-
lated and studied in the 1980s [2], [3]. Recently, the finite-
horizon counterparts have gained traction, particularly within
the controls community [4]–[10]. CS has been successfully
applied in areas such as path planning [8], [11], [12], trajectory
optimization [6], [7], [9], and robotic manipulation [13]. For
discrete-time systems, previous works have presented ways to
formulate finite-horizon CS problems as convex optimization
problems [14] by utilizing various parameterizations, such as
the state history feedback policy [15], the disturbance feedback
policy [10], and the auxiliary variable policy [11].

Distributed CS problems for multi-agent systems have been
addressed using similar parametrizations [16]–[18]. However,
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existing approaches overlook the dynamic coupling and the
localized nature of interconnected systems, treating the latter
as decoupled ‘agents.’ In tightly coupled systems like power
grids, however, distributed controllers require accounting for
interactions between subsystems, as disturbances can propa-
gate and amplify across the network, potentially leading to
undesirable effects. Designing such a controller, however, is
known to be challenging due to nonconvexity issues that arise
when attempting to apply parameterizations [19]. This moti-
vates our use of the System Level Synthesis (SLS) framework
[19]–[22], a method to synthesize a controller over the closed-
loop behavior of the system rather than the controller itself.
This approach particularly allows for the enforcement of local
communication constraints while preserving the problem’s
convex structure, admitting the use of distributed optimiza-
tion techniques such as the Alternating Direction Method of
Multipliers (ADMM) [23].

In this work, we address the finite-horizon localized CS
problem involving dynamically coupled systems subject to
discrete-time stochastic linear dynamics. In sharp contrast
to previous work that has utilized the SLS framework to
formulate distributed and localized Model Predictive Control
(MPC) problems under the case of no driving noise [21] or
deterministic and bounded noise [22], this work focuses on the
distributed and localized steering of state distributions in the
presence of Gaussian random disturbances. Our contributions
are three-fold. First, we show that the localized CS problem
can be formulated as a convex optimization problem over sys-
tem responses via the SLS framework. Second, we introduce a
problem transformation to address instances with nonseparable
objectives while maintaining the separable structures of certain
constraints. Lastly, we propose a distributed algorithm with
provable convergence, based on consensus ADMM [23], to
distribute computation across subsystems while accounting for
their local communication and information constraints.

The rest of the paper is structured as follows. Section II in-
troduces the localized covariance steering problem in coupled
systems. Section III presents a system-level parametrization
approach and its distributed solution method. Section IV con-
tains a numerical simulation of the proposed method. Section
V concludes this work with directions for future research.

Notation: Let N denote the set of non-negative integers,
and let Sn+ and Sn++ denote the convex cones of n × n
(real symmetric) positive semidefinite and positive definite
matrices, respectively. Let 1 denote the vector of ones. The
mean and covariance of a random vector x are denoted as
E[x] and Cov[x], respectively. A Gaussian random vector
with mean µ and covariance Σ is denoted as x ∼ N (µ, Σ).
Let diag(a1, . . . , aN ) denote a diagonal matrix with scalars
a1, . . . , aN and blkdiag(A1, . . . ,AN ) denote a block diagonal
matrix with matrices A1, . . . ,AN . The Frobenius norm of a
matrix A is denoted as ∥A∥F :=

√
Tr(A⊤A). Let A(R, C)

denote the submatrix of a matrix A formed by selecting the
rows indexed by R and the columns indexed by C, with :
denoting all indices. Lastly, ◦ denotes the elementwise matrix
multiplication (Hadamard product).
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II. PROBLEM FORMULATION

Consider a discrete-time, linear time-varying (LTV) stochas-
tic system composed of N interconnected subsystems:x

1
t+1
...

xN
t+1


︸ ︷︷ ︸

xt+1

=

A11
t . . . A1N

t
...

. . .
...

AN1
t . . . ANN

t


︸ ︷︷ ︸

At

x1
t
...

xN
t


︸ ︷︷ ︸

xt

+

B
1
t

. . .
BN

t


︸ ︷︷ ︸

Bt

u1
t
...

uN
t


︸ ︷︷ ︸

ut

+

w1
t
...

wN
t


︸ ︷︷ ︸

wt

, (1)

where xi
t ∈ Rni , ui

t ∈ Rmi , and wi
t ∈ Rni denote the

local state, control input, and process noise of subsystem i,
respectively, with Aij

t ∈ Rni×nj and Bi
t ∈ Rni×mi . The

local disturbance wi
t is assumed to be a white Gaussian noise

process with E[wi
t] = 0 and E[wi

t′w
i
t
⊤
] = δ(t, t′)Si, where

Si ∈ Sni
++, and δ(t, t′) = 1 if t = t′, and δ(t, t′) = 0

otherwise. Additionally, xt ∈ Rn, ut ∈ Rm, and wt ∈ Rn

denote the global state, control input, and process noise of the
system, respectively, with At ∈ Rn×n and Bt ∈ Rn×m, where
n :=

∑N
i=1 ni and m :=

∑N
i=1 mi.

Let G := (V, E) represent the system graph, where V :=
{1, 2, . . . ,N} is a set of vertices (i.e., subsystem indices) and
E ⊆ V × V is a set of edges such that ∀i, j ∈ V, (i, j) ∈
E ⇐⇒ ∃t : Aji

t ̸= 0. To capture communication constraints
between subsystems, we adopt the following definition [19].

Definition 1 (d-Hop Neighbors). For a locality pa-
rameter d ∈ N, the sets of d-outgoing neighbors
and d-incoming neighbors of subsystem i are defined
as Oi(d) := {j ∈ V : dist(i, j) ≤ d} and Ii(d) :=
{j ∈ V : dist(j, i) ≤ d}, respectively, where dist(i, j) denotes
the distance between (i.e., the number of edges in a shortest
directed path connecting) vertices i, j ∈ V .

The local control policy γi of subsystem i is said to be
admissible if each ui

t depends on t and the past global state
histories {x0,x1, . . . ,xt}. Furthermore, an admissible policy
γi is said to be d-localized if each ui

t depends only on t and
the past local state histories of its d-incoming neighbors:

ui
t = γi(t, {xj

0,x
j
1, . . . ,x

j
t}j∈Ii(d)). (2)

Problem 1. Consider the coupled system (1) with correspond-
ing system graph G. Let µ0,µf ∈ Rn, Σ0, Σf ∈ Sn++, and
d,T ∈ N. Let {Qt,Rt}T−1

t=0 be given such that Qt ∈ Sn+
and Rt ∈ Sm++ for all t. Assume, without loss of generality,
µf = 0. Find a set of admissible control policies {γi}i∈V that
solves the following localized covariance steering problem:1

minimize
{γi}i∈V

T−1∑
t=0

E
[
x⊤
t Qtxt + u⊤

t Rtut

]
(3a)

subject to (1), ∀t ∈ {0, 1, . . . ,T − 1}, (3b)
(2), ∀t ∈ {0, 1, . . . ,T − 1}, ∀i ∈ V, (3c)
x0 ∼ N (µ0, Σ0), (3d)
E[xT ] = µf , (3e)
(Σf − Cov[xT ]) ∈ Sn+. (3f)

1Without (3c), problem (3) reduces to the standard optimal covariance
steering problem, which can be transformed into and solved as a convex
semi-definite programming problem; see [5].

Note that the constraint in (3f) is a convex relaxation of
the non-convex equality constraint, Cov[xT ] = Σf , which
establishes an upper bound on the system’s uncertainty in
reaching the desired terminal mean µf [5].

Remark 1. Existing work on distributed CS overlooks sub-
system coupling and instead focuses on decoupled ‘agents’
whose local state evolves according to [16, Equation (17a)]:

xi
t+1 = Ai

tx
i
t +Bi

tu
i
t + wi

t, (4)

with local state matrices Ai
t ∈ Rni×ni . Unlike the intercon-

nected subsystem dynamics in (1), each agent’s dynamics (4)
evolves based only on its own state, input, and noise, thereby
making it incapable of modeling tightly coupled systems such
as power grids.

Remark 2. Additionally, related work imposes terminal co-
variance constraints of the form [16, Equation (19)]:

(Σi
f − Cov[xi

T ]) ∈ Sni
+ , ∀i ∈ V, (5)

for some Σi
f ∈ Sni

++, ∀i ∈ V . These ‘local’ constraints ensure
that each agent i meets an individual covariance requirement
on their own states. In contrast, in Problem 1, we consider a
more general constraint, namely (3f), which acts on the global
state of the system. Clearly, this global constraint naturally
subsumes the local constraints in (5).

III. MAIN RESULTS

In this work, we will restrict our attention to admissible
control policies associated with causal LTV controllers: ∀t,
ut = Kt,0x0 +Kt,1x1 + . . . +Kt,txt, where Kt,t′ ∈ Rm×n,
∀t′ ∈ {0, 1, . . . , t}. One natural way to impose the commu-
nication constraints (3c) on the structure of this controller is
to enforce the sparsity constraints [Kt,t′ ]

ij = 0 (for all t, t′

and all i, j with i /∈ Oj(d)), where [Kt,t′ ]
ij is a submatrix

of Kt,t′ such that ui
t =

∑t
t′=0

∑N
j=1[Kt,t′ ]

ijxj
t′ . However, it

is known that for certain (e.g., strongly connected2) systems,
such a constraint can lead to a nonconvex formulation after
applying parameterizations [19, Section 3.5]. To circumvent
this issue, we will utilize the SLS framework [19], in which the
closed-loop response of the system, rather than the controller
itself, is directly designed.

A. System Level Synthesis and Locality Constraints

Let x := [x⊤
0 ,x

⊤
1 , . . . ,x

⊤
T ]

⊤, u := [u⊤
0 ,u

⊤
1 , . . . ,u

⊤
T−1]

⊤,
and w := [x⊤

0 ,w
⊤
0 ,w

⊤
1 , . . . ,w

⊤
T−1]

⊤. Additionally, let
A := [blkdiag(A0,A1, . . . ,AT−1) 0Tn×n], and B :=
blkdiag(B0,B1, . . . ,BT−1). Using these definitions, the sys-
tem dynamics (1) can be compactly written as

x = ZAx+ ZBu+w, (6)

where Z is the block-lower shift matrix, which has identity
matrices along its first block subdiagonals and zeros elsewhere.
Let K be the block-lower-triangular (BLT) matrix defined by

K :=

 K0,0 0 · · · 0 0
K1,0 K1,1 · · · 0 0

...
. . .

. . .
...

...
KT−1,0 · · · KT−1,T−2 KT−1,T−1 0

 .

2That is, the corresponding system graph G is strongly connected, meaning
there exists a directed path from any vertex to any other vertex in the graph.



The closed-loop behavior of the system (1) under the feedback
gain K can then be characterized as follows:

x = (I − Z (A+BK))
−1︸ ︷︷ ︸

=:Φx

w, (7a)

u = K (I − Z (A+BK))
−1︸ ︷︷ ︸

=:Φu

w, (7b)

where Φx and Φu are BLT matrices called the state and
control system responses, respectively. In the sequel, we will
write Φt,t′

• to denote the (t, t′)th entry of Φ•, ∀• ∈ {x,u}.
By virtue of the following theorem, instead of optimizing

over the feedback gain K, the controller synthesis can be
performed by optimizing over the system responses {Φx, Φu}.
Theorem 1. [19, Theorem 2.1] For the LTV system dynamics
(1) evolving under the feedback control law u = Kx, the
following statements are true:

1) The affine subspace defined by

ZA,B

[
Φx
Φu

]
= I (8)

parametrizes all possible system responses (7), where
ZA,B := [I − ZA −ZB].

2) For any pair {Φx,Φu} of BLT matrices satisfying (8),
the feedback gain K = ΦuΦ

−1
x achieves the desired

closed-loop response.

Remark 3. If constraint (8) holds, the diagonal entries of Φx
(i.e., Φt,t

x , ∀t) are identity matrices, implying Φx is invertible.

The construction of the feedback gain K requires the
inversion of the matrix Φx. However, it is known that this
can be avoided via the following controller realization (see
[19, Section 2.1]):

ut =

T−1∑
t′=1

Φt,t′

u ŵt−t′ , (9)

where ŵt = xt+1 − x̂t+1 and x̂t+1 =
∑T−1

t′=1 Φ
t+1,t′+1
x ŵt−t′ .

The main advantage of the SLS framework is that the com-
munication constraints (3c) can be cast as affine (subspace)
constraints on the system responses {Φx,Φu}, as summarized
in the following definitions from [19].3

Definition 2 (d-Localized System Responses). Let [Φx]
ij be

the submatrix of Φx that maps the local noise history wj :=
[xj⊤

0 ,wj⊤
0 ,wj⊤

1 , . . . ,wj⊤
T−1]

⊤ of subsystem j to the local state
history xi := [xi⊤

0 ,xi⊤
1 , . . . ,xi⊤

T ]⊤ of subsystem i. Then, Φx

is said to be d-localized if [Φx]
ij = 0, ∀j ∈ V , ∀i /∈ Oj(d).

An analogous definition holds for Φu.

Definition 3 (d-Locality Constraints). A subspace L(d) is said
to be a d-locality constraint if[

Φx
Φu

]
∈ Ld (10)

implies that Φx is d-localized and Φu is (d+ 1)-localized.

3Note that the d-locality constraint (10) does not necessarily ensure that
the feedback gain K = ΦuΦ

−1
x itself is d-localized. However, the controller

realization in (9) is ensured to be d-localized, as any structural constraints
imposed on the system responses {Φx,Φu} are directly translated; see [19,
Section 2.1] or [22, Section III-B] for further details.

B. Localized SLS Covariance Steering Problem
We will now employ the SLS framework to transform the

localized CS problem (3) into an SLS problem over system
responses. Excluding the constraints (3c) at the moment,
problem (3) can be written as

minimize
x,u

E

[∥∥∥∥F 1
2

[
x
u

]∥∥∥∥2
2

]
(11a)

subject to (6), (11b)
P0x ∼ N (µ0, Σ0), (11c)
E[PTx] = µf , (11d)
(Σf − Cov[PTx]) ∈ Sn+, (11e)

where Q := blkdiag(Q0,Q1, . . . ,QT−1, 0), R :=
blkdiag(R0,R1, . . . ,RT−1), F := blkdiag(Q,R), and Pt is
a 1× (T + 1) block matrix, where all blocks are n× n zero
matrices except for the (t + 1)th block which is an identity
matrix. After some algebraic manipulations, the mean and
covariance of x can be written in Φx as

E[x] = Φxµw, Cov[x] = ΦxΣwΦ⊤
x , (12)

where µw := [µ⊤
0 , 0

⊤]⊤ and Σw := Cov[w] =
blkdiag(Σ0,W0,W1, . . . ,WT−1) with Wt := Cov[wt]. In
view of (12) and Remark 3, and with the addition of (10) in
place of (3c), problem (11) can be formulated as the following
convex localized SLS problem:4,5

minimize
Φx,Φu

f(Φx,Φu) :=

∥∥∥∥F 1
2

[
Φx
Φu

]
Θ

1
2

∥∥∥∥2
F

(13a)

subject to (8), (10), (13b)
PTΦxP

⊤
0 µ0 = µf , (13c)[

Σf PTΦxΣ
1
2
w(

PTΦxΣ
1
2
w

)⊤
I

]
⪰ 0, (13d)

where Θ := Σw+µwµ⊤
w. The linear-matrix-inequality (LMI)

constraint (13d) is obtained by applying Schur’s complement
formula to the terminal covariance constraint:(

Σf −PTΦxΣwΦ⊤
x P

⊤
T

)
∈ Sn+.

For the convexity of constraint (13d), see [5, Proposition 3].
Note that the localized SLS CS problem (13) includes con-
straint (13c) that couples the initial and target means and
constraint (13d) that couples the initial and target covariances.

C. Separability of the Localized SLS CS Problem
Solving the convex but centralized SLS problem (13) re-

quires knowledge of all system and problem parameters,
including the system matrices {A,B}, cost matrices {Q,R},
and the target mean µf and covariance Σf of the global system
state. However, this assumption can be overly restrictive in
practice, as each subsystems i may have access to only
local information on the aforementioned variables. To address
this scenario, we will investigate the separable structure of
problem (13) by utilizing the notion of separability [20]. This
structural insight will be utilized in the subsequent section to

4Note that each system response is taken from a set of BLT matrices, which
is a convex subset of the set of real matrices of the same dimension.

5While d-locality constraints are always convex, for some d, there may not
exist system responses satisfying both (8) and (10). Hence, the value of d
must be selected with great care (see, for instance, [24]). In this work, similar
to [21], [22], we assume that, for a given d, the localized SLS problem (13)
is feasible.



distribute computation across subsystems based on their local
information and communication constraints.

Let C := {C1, . . . , CN} and R• := {R1
•, . . . ,RN

• } be
partitions of the sets of indices of the columns of Φx (or Φu)
and the rows of Φ•, respectively, ∀• ∈ {x,u}. Additionally,
let S := {S1, . . . ,SN} be a partition of the set {1, . . . ,n}.

First, both the system-level parametrization constraint (8)
and the locality constraint (10) are known to be column-wise
separable with respect to the column-wise partition C (see

[20, Section III-A]): (8) ⇐⇒ ZA,B

[
Φx(:, Ci)
Φu(:, Ci)

]
= I(:, Ci),

∀i ∈ V; and (10) ⇐⇒
[
Φx(:, Ci)
Φu(:, Ci)

]
∈ Ld(:, Ci), ∀i ∈ V .

Subsequently, the terminal mean constraint (13c) is row-
wise separable with respect to the partition S , namely
(13c) ⇐⇒ [PTΦxP

⊤
0 ](Si, :)µ0 = µf (Si, :), ∀i ∈ V .6 In

contrast, the global terminal covariance constraint (13d) is
generally not separable due to the existence of nondiagonal
elements of Σf ; as such, exceptions include the special in-
stance with local terminal covariance constraints as described
in Remark 2, in which case Σf is diagonal.

Lastly, the objective function f in (13a) is generally
nonseparable. However, if F is diagonal, then f is row-
wise separable with respect to the row-wise partitions
Rx and Ru: f(Φx,Φu) =

∑
i∈V

(∑
r∈Ri

x
Q(r, r)Φx(r, :

)ΘΦx(r, :)
⊤ +

∑
s∈Ri

u
R(s, s)Φu(s, :)ΘΦu(s, :)

⊤). Further,
if Θ is diagonal, then f is column-wise separable with
respect to the column-wise partition C : f(Φx,Φu) =∑

i∈V
∑

c∈Ci

(
Θ(c, c)Φx(:, c)

⊤QΦx(:, c) +Φu(:, c)
⊤RΦu(:

, c)
)
. To address general instances in which these conditions

do not necessarily hold, the proposition below provides a
transformation that will allow one to recast problem (13) as an
equivalent problem with a separable objective function while
maintaining the separable structures of the aforementioned
constraints.

Proposition 1. Let the pair {Ψ⋆
x,Ψ

⋆
u} of system responses be

a solution of the following convex SLS problem:

minimize
Ψx,Ψu

f̃(Ψx,Ψu) :=

∥∥∥∥F 1
2

[
Ψx
Ψu

]
Λ

1
2

∥∥∥∥2
F

(14a)

subject to ZA,B

[
Ψx
Ψu

]
= V, (14b)[

Ψx
Ψu

]
V⊤ ∈ Ld, (14c)

PTΨxV
⊤P⊤

0 µ0 = µf , (14d)[
Σf PTΨxV

⊤Σ
1
2
w(

PTΨxV
⊤Σ

1
2
w

)⊤
I

]
⪰ 0, (14e)

where Λ is a diagonal matrix whose entries are the eigenvalues
of Θ and V is an orthogonal matrix satisfying Θ = VΛV⊤.
Then, the pair {Φ⋆

x,Φ
⋆
u} of system responses, where Φ⋆

x :=
Ψ⋆

xV
⊤ and Φ⋆

u := Ψ⋆
uV

⊤, is a solution of problem (13).

Proof. Since Θ is a real symmetric matrix, it can always be
diagonalized as Θ = VΛV⊤ with some orthogonal matrix
V. Since V is orthogonal, we have that the transformation
φ(Ψ) = ΨV⊤ is one-to-one, and that its inverse is given by
φ−1(Φ) = ΦV. Under the map φ, the transformed problem
(14) is equivalent to the original problem (13) in the sense
that if {Φ⋆

x,Φ
⋆
u} solves problem (13), then {Φ⋆

xV,Φ⋆
uV}

solves problem (14), whereas if {Ψ⋆
x,Ψ

⋆
u} solves problem

6Notice that PTΦxP⊤
0 is the first block of PTΦx, or equivalently ΦT ,0

x .

(14), then {Ψ⋆
xV

⊤,Ψ⋆
uV

⊤} solves problem (13) (see [25,
Section 4.1.3]). Note that Ψ⋆

x is invertible as both Φ⋆
x and

V are invertible. It follows from the linearity of φ and the
orthogonality of V that

K⋆ = Ψ⋆
uΨ

⋆
x
−1 = Φ⋆

uVV⊤Φ⋆
x
−1 = Φ⋆

uΦ
⋆
x
−1.

This proves the desired result.

Remark 4. Since Λ is diagonal, whether F is diagonal or
not, the objective function f̃ in (14a) is column-wise separable
with respect to C : f̃(Ψx,Ψu) =

∑
i∈V

∑
c∈Ci Λ(c, c)

(
Ψx(:

, c)⊤QΨx(:, c) +Ψu(:, c)
⊤RΨu(:, c)

)
. It can be shown that

the constraints (14b) and (14c) remain column-wise separable
with respect to Rx and Ru, while (14d) remains row-wise
separable with respect to S . The separability of the LMI
constraint (14e) still depends on whether it can be decomposed
into local constraints, as described in Remark 2.

D. Distributed Solution using Consensus ADMM
To solve in a distributed manner the localized SLS prob-

lem (13), which as shown generally includes nonseparable
components, we employ the consensus ADMM framework
[23]. To ensure consensus across subsystems, we let each
subsystem i ∈ V maintain its local copies of system responses
{Φ(i)

x ,Φ
(i)
u }, while introducing global variables Φg

x and Φg
u

representing the consensus system responses such that the
consensus constraints are: Φ(i)

x = Φg
x and Φ

(i)
u = Φg

u, ∀i ∈ V .
The subsystem communication topology is assumed to be
determined by the system graph G and a locality parameter
d. That is, each subsystem can only send information to
its d-outgoing neighbors and receive information from its d-
incoming neighbors. To ensure that all subsystems arrive at a
consensus for all d ≥ 1, we make the following assumption.

Assumption 1. The system graph G is strongly connected.

Algorithm 1 Distributed and localized covariance steering for
coupled systems using consensus ADMM

1: Φ
(i)
x,0,Φ

(i)
u,0, Ω(i)

x,0,Ω
(i)
u,0, and k ← 0 ▷ Initialization

2: while not converged do
3: for i ∈ V do in parallel
4: Send Φ

(i)
x,k,Φ

(i)
u,k to neighbors in Oi(d)

5: Receive Φ
(j)
x,k,Φ

(j)
u,k from neighbors in Ii(d)

6: Φ
(i)
x,k+1,Φ

(i)
u,k+1 ← Use (15) ▷ Primal update

7: Ω
(i)
x,k+1,Ω

(i)
u,k+1 ← Use (16) ▷ Dual update

8: end for
9: k ← k + 1

10: end while

The proposed consensus ADMM algorithm for the localized
SLS problem (13) is detailed in Algorithm 1. First, the
local system responses, Φ(i)

x,0,Φ
(i)
u,0, are initialized to random

matrices, while the local dual matrices, Ω
(i)
x,0,Ω

(i)
u,0, are set

to zero matrices (line 1). Each subsystem i then sends its
local system responses to its d-outgoing neighbors (line 4) and
receives local system responses from its d-incoming neighbors
(line 5). Each subsystem then performs primal and dual update
procedures (lines 6 and 7), as specified below.

Primal Update: In the case where Q and R are diagonal,
each subsystem i updates their local system responses Φ

(i)
x



and Φ
(i)
u by solving the following convex SLS subproblem:

minimize
Φ

(i)
x ,Φ

(i)
u

fi(Φ
(i)
x ,Φ(i)

u )

+ 1⊤(Ω
(i)
x,k ◦Φ(i)

x +Ω
(i)
u,k ◦Φ(i)

u )1

+ ρ
∑

j∈Ii(d)

∥∥∥Φ(i)
x − 1

2

(
Φ

(i)
x,k +Φ

(j)
x,k

)∥∥∥2
F

+ ρ
∑

j∈Ii(d)

∥∥∥Φ(i)
u − 1

2

(
Φ

(i)
u,k +Φ

(j)
u,k

)∥∥∥2
F

(15a)

subject to ZA,B

[
Φ

(i)
x (:, Ci)

Φ
(i)
u (:, Ci)

]
= I(:, Ci), (15b)[

Φ
(i)
x (:, Ci)

Φ
(i)
u (:, Ci)

]
∈ Ld(:, Ci), (15c)

[PTΦ
(i)
x P⊤

0 ](Si, :)µ0 = µf (Si, :), (15d)[
Σf PTΦ(i)

x Σ
1
2
w(

PTΦ(i)
x Σ

1
2
w

)⊤
I

]
⪰ 0, (15e)

where ρ > 0 is a penalty parameter, and

fi(Φx,Φu) :=
∑
r∈Ri

x

Q(r, r)Φx(r, :)ΘΦx(r, :)
⊤

+
∑
s∈Ri

u

R(s, s)Φu(s, :)ΘΦu(s, :)
⊤.

For the case of not necessarily diagonal F, an analogous
convex SLS subproblem can be constructed by decomposing
the transformed problem (14), which is omitted here due to
limited space.

Dual Update: Each subsystem i updates their dual variables
according to: ∀• ∈ {x,u},

Ω
(i)
•,k+1 = Ω

(i)
•,k + ρ

∑
j∈Ii(d)

(
Φ

(i)
•,k+1 −Φ

(j)
•,k+1

)
. (16)

Algorithm 1 keeps iterating until all N subsystems reach
a consensus, i.e., when the average consensus constraints’
residual norms for both system responses reaches a tolerance

ε > 0: 1
N

∑
i∈V

∑
j∈Ii(d)

∥∥∥Φ(i)
• −Φ

(j)
•

∥∥∥2
F
≤ ε, ∀• ∈ {x,u}.

Proposition 2. Let Fi(d) denote the feasible set of the SLS
subproblem (15) for subsystem i. If Assumption 1 holds and,
for all i ∈ V , Slater’s condition [25] holds (i.e., the relative
interior of Fi(d) is nonempty), then the sequence of local
system responses ({Φ(i)

x,k,Φ
(i)
u,k})k∈N in Algorithm 1 satisfies,

as k → ∞, 1)
∥∥∥Φ(i)

•,k −Φ
(j)
•,k

∥∥∥2
F
→ 0, ∀j ∈ Ii(d) and ∀• ∈

{x,u}, and 2) f(Φ
(i)
x,k,Φ

(i)
u,k) → p⋆, where p⋆ denotes the

optimal value of the localized SLS problem (13).

Proof. Let hi be the extended real-valued function defined by:

hi(Φx,Φu) :=

fi(Φx,Φu), if
[
Φx

Φu

]
∈ Fi(d),

+∞, otherwise.

Let epihi := {(Φx,Φu, τ) : hi(Φx,Φu) ≤ τ} be the
epigraph of hi. From the definition of hi, it follows that
epihi = {(Φx,Φu, τ) ∈ Fi(d) × R : fi(Φx,Φu) ≤ τ}.
Since Fi(d) is a nonempty closed convex set and fi is a real-
valued convex function, epihi is a nonempty closed convex

set, which is both necessary and sufficient for hi to be a closed
proper convex function [23, Section 3.2]. Now, consider the
distributed form of the SLS problem (13):

minimize
{Φ(i)

x ,Φ
(i)
u }i∈V

∑
i∈V

hi(Φ
(i)
x ,Φ(i)

u ) (17a)

subject to Φ(i)
x = Φ(j)

x , ∀j ∈ Ii(d), ∀i ∈ V, (17b)

Φ(i)
u = Φ(j)

u , ∀j ∈ Ii(d), ∀i ∈ V. (17c)

Clearly, problem (17) is equivalent to its centralized counter-
part (13) with the same optimal solution and optimal value,
as Assumption 1 ensures that Φ

(i)
• = Φ

(j)
• , ∀• ∈ {x,u},

∀i, j ∈ V . Lastly, Slater’s condition implies that strong duality
is achieved. In light of all these results, the rest of the proof
follows directly from [23, Appendix A].

Remark 5. The computational complexity of Algorithm 1 is
determined by the primal update procedure (line 6), in which
each subsystem solves per iteration the SLS subproblem (15)
over O((n2+nm)T 2) variables subject to O((n+m)T ) con-
straints. While this complexity matches that of the centralized
SLS problem (13) due to the use of the local copies of the
global system responses, it is worth highlighting that solving
problem (15) only requires each subsystem i to know, besides
the global target covariance Σf , its assigned portion of the
system matrices {A,B}, the cost matrices {Q,R}, and the
target mean µf . Additionally, in the special instance of local
terminal covariance constraints as described in Remark 2, this
complexity can further be reduced.

IV. NUMERICAL SIMULATIONS

In this section, we verify the performance of Algorithm 1
on a power system modeled as a randomized spanning tree
within a 6×6 grid (i.e., N = 36), as shown in Figure 1. Each
subsystem is governed by the discretized swing equations:
miθ̈i+ diθ̇i = −∑

j∈Ni
kij(θi− θj)+wi+ui, where θi and

θ̇i denote the phase angle and frequency deviations; mi and
di are the inertia and damping; wi and ui represent external
disturbances and control inputs; kij is the coupling term
between subsystems i and j; and Ni is the set of neighboring
vertices. Defining the local state vector of each subsystem
as xi :=

[
θi θ̇i

]⊤
, the discretized swing dynamics can be

expressed as

xi
t+1 = Aiixi

t +
∑

j∈Ni\{i}

Aijxj
t +Biui

t + wi
t, (18)

where Aii =

[
1 ∆t

− ki

mi∆t 1− di

mi∆t

]
, Aij =

[
0 0

kij

mi ∆t 0

]
,

Bi = [1 0]
⊤, ki =

∑
j∈Ni

kij , and ∆t = 0.2. The values of
kij , di, and mi are sampled uniformly at random from [0.5, 1],
[0.2, 0.8], and [0.5, 1], respectively. Note that the system graph
G coincides with the network topology displayed in Figure 1.

The localized CS problem (3) is initialized with T = 10,
Q = diag(100, 500, . . . , 100, 500), R = 0.01I , Wt = 0.2I ,
µf = 0, and Σf = MM⊤ with the diagonal (resp., non-
diagonal) elements of M sampled from N (0.5, 0.1) (resp.,
N (0, 0.1)). The initial state is sampled as x0 ∼ N (µ0, Σ0),
where µ0 follows the standard normal distribution scaled by
30, and Σ0 is a diagonal matrix with entries sampled from
a uniform distribution over (0, 60]. The locality parameter is
chosen as d = 1, i.e., the communication graph of subsystems
is also equivalent to the system graph G. We execute Algo-
rithm 1 using CLARABEL [26], an interior point conic solver
available in CVXPY [27]. With ρ = 0.01 and ε = 10−4, the
algorithm converges within approximately 1, 000 iterations.



Fig. 1: Network topology of the 6× 6 power grid.
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Fig. 2: Results for the simulation example with d = 1.

Figure (2) displays results for the numerical simulation.
Figures 2a and 2b display each subsystem’s phase angle and
frequency deviations over the time horizon, respectively. It
can be seen that both state deviations converge to 0 at the
final time. Figure 2c shows the torque input at each time step.
Figure 2d shows the difference between the final covariance
and the state covariance at each time step, evaluated using
three different norms7. In all cases, the state covariance at
the final stage either converges to or closely approximates the
target covariance.

V. CONCLUSION

This work addressed the problem of localized covariance
steering in coupled stochastic linear systems. We employed the
system-level synthesis framework to transform this problem
into a convex optimization problem over system responses.
A consensus-based algorithm was then proposed to distribute
computation among subsystems. The effectiveness of this
approach was demonstrated on a power system. In future work,
we plan to address how clustering agents can accelerate the
convergence of the proposed algorithm, as in [28], and to
investigate potential data-driven extensions of distributed and
localized covariance steering.

7Here, ∥ · ∥2 and ∥ · ∥∗ denote the spectral norm and the nuclear (or trace)
norm of a matrix, respectively.
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